Abstract:
Hollow silica nanoparticles can have well defined non-porous shells with low shell fragmentation and good dispersability. These well defined hollow particles can be formed through the controlled oxidation of silicon nanoparticles in an organic solvent. The hollow nanoparticles can have a submicron secondary particle sizes. The hollow silica nanoparticles can be incorporated into polymer composites, such as low index-of-refraction composites, for appropriate applications.
Abstract:
An electric submersible pump device having a motor part, a pump part, and a protector part. The protector part includes redundant shaft seal parts.
Abstract:
Functional composite materials comprise elemental inorganic particles within an organic matrix. The elemental inorganic materials generally comprise elemental metal, elemental metalloid, alloys thereof, or mixtures thereof. In alternative or additional embodiments, the inorganic particles can comprise a metal oxide, a metalloid oxide, a combination thereof or a mixture thereof. The inorganic particles can have an average primary particle size of no more than abut 250 nm and a secondary particle size in a dispersion when blended with the organic matrix of no more than about 2 microns. The particles can be substantially unagglomerated within the composite. The organic binder can be a functional polymer such as a semiconducting polymer. The inorganic particles can be surface modified, such as with a moiety having an aromatic functional group for desirable interactions with a semiconducting polymer. Appropriate solution based methods can be used for forming the composite from dispersions of the particles. The composites can be processed into products, such as printed electronics devices.
Abstract:
Collections of composite particles comprise inorganic particles and another composition, such as a polymer and/or a coating composition. In some embodiments, the composite particles have small average particle sizes, such as no more than about 10 microns or no more than about 2.5 microns. The composite particles can have selected particle architectures. The inorganic particles can have compositions selected for particular properties. The composite particles can be effective for printing applications, for the formation of optical coatings, and other desirable applications.
Abstract:
The present invention is directed to an electrophoretic dispersion comprising pigment particles dispersed in a solvent or solvent mixture, wherein said pigment particles comprises at least one polymer chain comprising a terminal thiocarbonylthio group, attached to the particle surface. The invention also relates to pigment particles suitable for use in an electrophoretic dispersion and methods for their preparation through a RAFT polymerization technique.
Abstract:
Disclosed in the present invention is a body fluid imaging system, a body fluid imaging method and a depth of field extension imaging device. The depth of field extension imaging device includes: an interface unit for receiving the light refracted and/or reflected by the body fluid sample in a current body fluid sample container; and a depth of field extension unit for carrying out wavefront coding and convergence processing on the light received by said interface unit. By means of the system, method and device of the present invention, the time needed by the imaging process can be reduced, thus improving the productivity of the system; and error generated due to frequently adjusting the relative position between the body fluid sample container, the depth of field extension imaging device and the image sensor can be avoided, thus improving the reliability of the system.
Abstract:
In general terms, embodiments of the present invention relate to systems, methods, and computer program products for determining forecasting data relating to a product using a neural network and accessing that forecasting data. In some embodiments, a system is provided that includes (a) forecasting apparatus, which stores product information, a data matrix, and a neural network; and (b) a computing system that access the forecasting apparatus via a web portal and transmits some or all of the product information to the forecasting apparatus. In some embodiments, the forecasting apparatus is configured to determine a sales forecast using the product information, data matrix, and neural network and present the sales forecast to the computing system via the web portal.
Abstract:
The present invention is directed to a charged pigment particles useful for the electrophoretic fluid. The present invention describes how the charge property of the charged pigment particle may be controlled. By adjusting the charge property of the charged pigment particles to a suitable level for an electrophoretic display system, a faster switching speed, a higher contrast ratio and better image bistability may be achieved.
Abstract:
Disclosed is a process for the preparation of polyetherester polyols prepared with hybrid catalysts, the polyether esters obtained from the process and the use of such materials in polyurethane applications. The hybrid catalysts used in this invention comprise double metal cyanide complex catalysts (DMC) and at least one co-catalyst.
Abstract:
A method for synthesizing a thin film of copper, zinc, tin, and a chalcogen species (“CZTCh” or “CZTSS”) with well-controlled properties. The method includes depositing a thin film of precursor materials, e.g., approximately stoichiometric amounts of copper (Cu), zinc (Zn), tin (Sn), and a chalcogen species (Ch). The method then involves re-crystallizing and grain growth at higher temperatures, e.g., between about 725 and 925 degrees K, and annealing the precursor film at relatively lower temperatures, e.g., between 600 and 650 degrees K. The processing of the precursor film takes place in the presence of a quasi-equilibrium vapor, e.g., Sn and chalcogen species. The quasi-equilibrium vapor is used to maintain the precursor film in a quasi-equilibrium condition to reduce and even prevent decomposition of the CZTCh and is provided at a rate to balance desorption fluxes of Sn and chalcogens.