Abstract:
Disclosed is a method for forming a polycrystalline silicon film of a polycrystalline silicon thin film transistor. The method includes a step of crystallizing an amorphous silicon film deposited on a glass substrate by irradiating a laser beam onto the amorphous silicon film using a mask pattern. The glass substrate is horizontally moved by a predetermined distance unit corresponding to a translation distance of the mask pattern when the laser beam is irradiated onto the amorphous silicon film through a mask having the mask pattern, thereby growing grains in a circular shape.
Abstract:
A light refraction controlling panel, a 3D-display, and a method of operating a 3D-display are provided. The light refraction controlling panel includes a transparent substrate, a barrier wall on the transparent substrate, first to fourth electrodes on the barrier wall, the first to fourth electrodes being separated from each other, an electro-wetting prism within the barrier wall, the electro-wetting prism being configured to refract incident light to a desired direction, and an isolation layer between the barrier wall and the first to fourth electrodes, and the electro-wetting prism. One electrode of two adjacent electrodes of the first to fourth electrodes is inside an other electrode of the two adjacent electrodes.
Abstract:
In one embodiment, the electrowetting device includes a first medium; a second medium that is not mixed with the first medium and has a refractive index different from a refractive index of the first medium; an upper electrode that adjusts an angle of a boundary surface between the first medium and the second medium; and a barrier wall that has a side surface surrounding the first and second mediums, allows the upper electrode to be disposed on a portion of the side surface, and has irregular widths.
Abstract:
A touch screen panel includes: a first substrate and a second substrate, which face each other with respect to a liquid crystal interposed therebetween; and a touch sensor interposed between the first substrate and the second substrate. The touch sensor includes: a plurality of first touch signal lines disposed on the first substrate and extending in a first direction; a protective layer disposed on the first substrate, the protective layer including a dielectric material and substantially the plurality of first touch signal lines; a plurality of contact pads disposed on the protective layer; a plurality of second touch signal lines disposed on the second substrate and extending in a second direction perpendicular to the first direction; and a plurality of touch sensor spacers electrically connected to the plurality of second touch signal lines. A gap between the touch sensor spacers and the plurality of contact pads is defined, and the spacers are disposed to face the plurality of contact pads.
Abstract:
A vibration touch sensor includes; a first substrate, a second substrate arranged to face the first substrate with a predetermined gap therebetween, a first electrode disposed on the first substrate, a second electrode disposed on the second substrate, a piezoelectric material layer disposed on one of the first electrode and the second electrode, wherein the piezoelectric material layer generates an electrical signal in response to an external touch applied to at least one of the first substrate and the second substrate, and a controller which receives the electrical signal generated from the piezoelectric material layer and generates a touch input signal, the controller controlling an alternating current voltage applied to at least one of the first electrode and the second electrode.
Abstract:
According to example embodiments, a semiconductor device includes a first electrode, a second electrode apart from the first electrode, and an active layer between the first and second electrodes. The active layer includes first and second layers, the first layer contacts the first and second electrodes, and the second layer is separated from at least one of the first and second electrodes.
Abstract:
A transistor includes a channel layer disposed above a gate and including an oxide semiconductor. A source electrode contacts a first end portion of the channel layer, and a drain electrode contacts a second end portion of the channel layer. The channel layer further includes a fluorine-containing region formed in an upper portion of the channel layer between the source electrode and the drain electrode.
Abstract:
A vibration touch sensor includes; a first substrate, a second substrate arranged to face the first substrate with a predetermined gap therebetween, a first electrode disposed on the first substrate, a second electrode disposed on the second substrate, a piezoelectric material layer disposed on one of the first electrode and the second electrode, wherein the piezoelectric material layer generates an electrical signal in response to an external touch applied to at least one of the first substrate and the second substrate, and a controller which receives the electrical signal generated from the piezoelectric material layer and generates a touch input signal, the controller controlling an alternating current voltage applied to at least one of the first electrode and the second electrode.
Abstract:
Disclosed is a method for crystallizing a single crystalline Si film on an amorphous substrate, such as a glass substrate or a plastic substrate. The method includes the steps of selectively irradiating the laser beam onto a pixel section TFT forming region and a peripheral circuit TFT forming region of the amorphous silicon film through primary and secondary laser irradiation processes, thereby forming a poly-silicon film and irradiating the laser beam onto one of grains formed in the poly-silicon film through a third laser irradiation process, thereby forming a single crystalline silicon region having a desired size on a predetermined portion of the amorphous silicon film. The amorphous silicon film is locally crystallized into the single crystalline silicon film so that characteristics of TFTs for the pixel section and the peripheral circuit are improved while ensuring high uniformity.
Abstract:
A light refraction controlling panel, a 3D-display, and a method of operating a 3D-display are provided. The light refraction controlling panel includes a transparent substrate, a barrier wall on the transparent substrate, first to fourth electrodes on the barrier wall, the first to fourth electrodes being separated from each other, an electro-wetting prism within the barrier wall, the electro-wetting prism being configured to refract incident light to a desired direction, and an isolation layer between the barrier wall and the first to fourth electrodes, and the electro-wetting prism. One electrode of two adjacent electrodes of the first to fourth electrodes is inside an other electrode of the two adjacent electrodes.