Abstract:
A control circuit with a high voltage sense device. In one embodiment, a circuit includes a first transistor disposed in a first substrate having first, second and third terminals. A first terminal of the first transistor is coupled to an external voltage. A voltage provided at a third terminal of the first transistor is substantially proportional to a voltage between the first and second terminals of the first transistor when the voltage between the first and second terminals of the first transistor is less than a pinch-off voltage of the first transistor. The voltage provided at the third terminal of the first transistor is substantially constant and less than the voltage between the first and second terminals of the first transistor when the voltage between the first and second terminals of the first transistor is greater than the pinch-off voltage of the first transistor. The circuit also includes a control circuit disposed in the first substrate and coupled to the third terminal of the first transistor. The circuit further includes a second transistor disposed in a second substrate. A first terminal of the second transistor coupled to the external voltage.
Abstract:
A discharge circuit for an EMI filter capacitor includes normally-ON transistors. The normally-ON transistors may be controlled to limit current through them when an AC source is coupled across the discharge circuit. When the AC source is disconnected from the discharge circuit, the normally-ON transistors turn ON to allow current flow through them. The current flow allows the EMI filter capacitor to be discharged by a discharge resistor.
Abstract:
A transistor is formed inside an isolation structure which includes a floor isolation region and a trench extending from the surface of the substrate to the floor isolation region. The trench may be filled with a dielectric material or may have a conductive material in a central portion with a dielectric layer lining the walls of the trench.
Abstract:
A trench-gate metal oxide semiconductor field-effect transistor includes a field plate that extends into a drift region of the transistor. The field plate is configured to deplete the drift region when the transistor is in the OFF-state. The field plate is formed in a field plate trench. The field plate trench may be formed using a self-aligned etch process. The conductive material of the field plate and gate of the transistor may be deposited in the same deposition process step. The conductive material may be etched thereafter to form the field plate and the gate in the same etch process step.
Abstract:
Processes for forming isolation structures for semiconductor devices include forming a submerged floor isolation region and a filed trench which together enclose an isolated pocket of the substrate. One process aligns the trench to the floor isolation region. In another process a second, narrower trench is formed in the isolated pocket and filled with a dielectric material while the dielectric material is deposited so as to line the walls and floor of the first trench. The substrate does not contain an epitaxial layer, thereby overcoming the many problems associated with fabricating the same.
Abstract:
Power devices and associated methods of manufacturing are disclosed herein. In one embodiment, a power device includes a drain at a first end, a source and a gate at a second end, and a drift region between the drain at the first end and the source at the second end. The drift region includes a p-type dopant column juxtaposed with an n-type dopant column. The p-type dopant column and the n-type dopant column together have a width less than 12 microns.
Abstract:
Various integrated circuit devices, in particular a diode, are formed inside an isolation structure which includes a floor isolation region and a trench extending from the surface of the substrate to the floor isolation region. The trench may be filled with a dielectric material or may have a conductive material in a central portion with a dielectric layer lining the walls of the trench. Various techniques for terminating the isolation structure by extending the floor isolation region beyond the trench, using a guard ring, and a forming a drift region are described.
Abstract:
A control circuit with a high voltage sense device. In one embodiment, a circuit includes a first transistor disposed in a first substrate having first, second and third terminals. A first terminal of the first transistor is coupled to an external voltage. A voltage provided at a third terminal of the first transistor is substantially proportional to a voltage between the first and second terminals of the first transistor when the voltage between the first and second terminals of the first transistor is less than a pinch-off voltage of the first transistor. The voltage provided at the third terminal of the first transistor is substantially constant and less than the voltage between the first and second terminals of the first transistor when the voltage between the first and second terminals of the first transistor is greater than the pinch-off voltage of the first transistor. The circuit also includes a control circuit disposed in the first substrate and coupled to the third terminal of the first transistor. The circuit further includes a second transistor disposed in a second substrate. A first terminal of the second transistor coupled to the external voltage.
Abstract:
Various integrated circuit devices, in particular a transistor, are formed inside an isolation structure which includes a floor isolation region and a trench extending from the surface of the substrate to the floor isolation region. The trench may be filled with a dielectric material or may have a conductive material in a central portion with a dielectric layer lining the walls of the trench. Various techniques for terminating the isolation structure by extending the floor isolation region beyond the trench, using a guard ring, and a forming a drift region are described.
Abstract:
A technique for controlling a power supply with power supply control element with a tap element. In one embodiment, a power supply regulator includes a power transistor having first, second, third and fourth terminals. A control circuit is included, which is coupled to the third and fourth terminals of the power transistor. The power transistor is configured to switch a current between the first and second terminals in response a control signal received from the control circuit at the third terminal. A voltage between the fourth and second terminals of the power transistor is substantially proportional to a current flowing between the first and second terminals when a voltage between the first and second terminals is less than a pinch off voltage. The voltage between the fourth and second terminals of the power transistor is substantially constant and less than the voltage between the first and second terminals when the voltage between the first and second terminals is greater than the pinch off voltage.