Abstract:
A photovoltaic device and a method of manufacturing the same are disclosed. In one embodiment, the device includes i) a semiconductor substrate, ii) a first conductive semiconductor layer formed on a first region of the semiconductor substrate and iii) a first transparent conductive layer formed on the first conductive semiconductor layer. The device may further include i) a second conductive semiconductor layer formed on a second region of the semiconductor substrate, ii) a second transparent conductive layer formed on the second conductive semiconductor layer and iii) a gap passivation layer interposed between i) the first layers and ii) the second layers, wherein the gap passivation layer has a thickness greater than the sum of the thicknesses of the first layers.
Abstract:
The solar cell includes a substrate, a semiconductor layer, a first doped pattern and a second doped pattern. The substrate has a first surface adapted to receive solar light and a second surface opposite to the first surface. The semiconductor layer includes an insulating pattern formed on a first area of the second surface of the substrate and a semiconductor pattern formed on a second area of the second surface of the substrate in which the insulating pattern is not formed. The first doped pattern and the second doped pattern are formed either in or on the semiconductor pattern.
Abstract:
An exemplary embodiment of the present invention provides a method for manufacturing a solar cell, which includes: forming a first semiconductor layer on a first surface of a light-absorbing layer, forming a second semiconductor layer on a second surface of the light-absorbing layer, forming a first transparent conductive layer having one X-ray diffraction peak on the first semiconductor layer in a first direction, forming a second transparent conductive layer having one X-ray diffraction peak on the second semiconductor layer in a second direction opposite to the first direction, forming a first electrode on the first transparent conductive layer in the first direction and forming a second electrode on the second transparent conductive layer in the second direction, in which at least one of the first transparent conductive layer and the second transparent conductive layer is formed at about 180 to about 220° C., at least one of the first transparent conductive layer and the second transparent conductive layer includes oxidized tungsten, and 2θ is 30.2±0.1 degrees in the X-ray diffraction peak.
Abstract:
A method of forming an electrode, by which the resistance of the electrode can be reduced, and a method of manufacturing a solar cell using the method of forming an electrode are provided. The electrode forming method includes coating conductive paste on a substrate, forming a metal layer by drying the conductive paste or heating the same at low temperature, and annealing the metal layer by Joule heating using the metal layer by applying an electric field to the metal layer.