Abstract:
Disclosed is an infusion pump and a fluid container for expelling a fluid from the fluid container to a patient. The pump comprises a housing having a chamber therein for receiving the fluid reservoir. A first wall is provided on the housing for contacting the fluid reservoir, and a second wall is movable from a first position distanced from the first wall to form the chamber therebetween, and a second position relatively closer to the first wall. Advancing the movable wall from the first position to the second position expels fluid from the collapsible reservoir. Preferably, the first and second walls are provided with non-planar complementary surface configurations for contacting the collapsible reservoir. Retraction mechanisms for retracting the movable wall from the second position to the first position, and user readable indicium of the status of the dispensation cycle are also disclosed.
Abstract:
Disclosed is an infusion pump for expelling a fluid from a collapsible fluid reservoir to a patient. The pump includes a housing having a chamber therein for receiving the fluid reservoir. A first wall is provided on the housing for contacting the fluid reservoir, and a second wall is movable from a first position distanced from the first wall to form the chamber therebetween, and a second position relatively closer to the first wall. Advancing the movable wall from the first position to the second position expels fluid from the collapsible reservoir at a substantially constant rate by applying increasing force on the fluid reservoir through the dispensation cycle. Preferably, the first and second walls are provided with non-planar complementary surface configurations for contacting the collapsible reservoir. Retraction mechanisms for retracting the movable wall from the second position to the first position, and user readable indicium of the status of the dispensation cycle are also disclosed.
Abstract:
A spring-actuated infusion syringe includes a housing having an open distal end, with a spring-loaded piston disposed for axial translation in the housing. The piston is biased toward the distal end of the housing. The syringe also includes a barrel for containing a liquid medicament, the barrel having a distal end having a fluid passage therethrough and an open proximal end. A plunger is disposed in the barrel for axial translation therein. The proximal end of the barrel is axially insertable into the distal end of the housing, whereby the piston enters the proximal end of the barrel and engages the plunger. In use, the barrel is filled with a medicament through the fluid flow passage, and the flow of medicament from the syringe is obstructed. The proximal end of the barrel is inserted into the distal end of the housing, whereby the piston enters the proximal end of the barrel. The plunger, immobilized by the hydrostatic pressure of the liquid in the barrel, pushes the piston proximally against its biasing force. An engagement between an annular barrel flange and an internal housing thread retains the barrel at the desired axial position within the housing. To deliver the liquid from the syringe, the obstruction is removed. The hydrostatic pressure in the barrel being relieved, the biasing force of the piston pushes the plunger distally into the barrel, displacing the liquid therefrom through the fluid flow passage.
Abstract:
A binary connector intercouples a plugged drug vial and a plugged, flexible-walled diluent container so that the diluent can pass to the vial from the container only after the latter has been pressurized by squeezing. Sharp-tipped, hollow spikes with intercommunicating axial bores extend in diametrically opposite directions from a disk-shaped base, with jaws having circularly arrayed flexible arms extending in diametrically opposite directions from the base, coaxially around respective ones of the spikes. A compressible rubber plug is wedged in one of the bores. A vial is engaged to a container for liquid communication by snapping the connectors' jaws around their respective inlets, causing the connectors' hollow spikes to pierce their respective plugs. However, not until the container is squeezed is the plug expelled from the blocked bore and communication established between vial and container.
Abstract:
A medical solution container includes a bag portion for storing solution and a header portion which incorporates an improved outlet port in communication with the bag portion for receiving and holding a spike from an administration set. The outlet port has, at a distal end from the bag portion, a generally inwardly inclined tapered annular collar which, at its widest diameter portion, joins a substantially cylindrical coaxial bore section. The cylindrical bore section has a first section with a reduced diameter which adjoins a second section having an enlarged diameter. The second section is located at an end of the outlet port proximate the bag. A pierceable diaphragm for sealing the outlet port is supported at the junction of the reduced and enlarged diameter bore sections and lies substantially in a plane which is at an angle to a normal to the insertion direction of the spike or the axial direction of the cylindrical bore. By providing the diaphragm at an angle, which is preferably between about 5.degree. and about 20.degree., the force required to pierce the diaphragm with the spike is reduced while a reliable holding force is maintained after the spike has been inserted, to frictionally hold the spike in the outlet port.
Abstract:
A wallet or billfold of exceptionally thin construction having a limited number of folds, pockets, and thickness of material, yet being capable of holding both bills and credit cards in separate pockets. Access to the card pocket may be achieved without unfolding the wallet or exposing the currency carried in it.
Abstract:
An administration set with a check valve above a side port where the side port is used for the introduction of a secondary liquid, and this check valve is extremely sensitive to minute pressure changes in the combined administration set. The valve includes a very light disk supported on a series of upstanding prongs that hold a sealing surface of the disk to within 0.002 to 0.030 inch of a valve seat when in open position. The highly sensitive valve is easy to manufacture, easy to prime, and resists malfunctioning due to sticking shut or open. The valve also permits high flow rates (up to 500 ml/hr. or more) commonly used in medical administration sets.
Abstract:
A variable device for regulating the outlet pressure of a fluid from a valve body, includes a pressure-sensing chamber having a wall formed by a resilient self-restoring diaphragm which is responsive to pressure in the chamber. A valve element connected to the diaphragm controls flow into the chamber. Increased pressure in the chamber decreases the flow into the chamber and decreasing pressure increases flow whereby fluid flow out from the chamber is maintained at a desired pressure. The outlet pressure is adjusted by deflecting the diaphragm in a direction to open the valve while permitting a section of the diaphragm connected to the valve member to remain responsive to the pressure in the chamber. An adjustment cover is provided to adjustably deflect the diaphragm and includes a catch mechanism to allow adjustment of the fluid outlet pressures and also retain the device at a desired value. An indicator arrangement may be provided to visually indicate the fluid outlet pressure.
Abstract:
An infusion pump for expelling a fluid from a collapsible fluid reservoir to a patient. The pump includes a housing having a chamber therein for receiving the fluid reservoir. A first wall is provided on the housing for contacting the fluid reservoir, and a second wall is movable from a first position distanced from the first wall to form the chamber therebetween, and a second position relatively closer to the first wall. Advancing the movable wall from the first position to the second position expels fluid from the collapsible reservoir at a substantially constant rate by applying increasing force on the fluid reservoir through the dispensation cycle. Preferably, the first and second walls are provided with non-planar complementary surface configurations for contacting the collapsible reservoir. Retraction mechanisms for retracting the movable wall from the second position to the first position, and user readable indicium of the status of the dispensation cycle are also disclosed.
Abstract:
Disclosed is an infusion pump for expelling a fluid from a collapsible fluid reservoir to a patient. The pump includes a housing having a chamber therein for receiving the fluid reservoir. A first wall is provided on the housing for contacting the fluid reservoir, and a second wall is movable from a first position distanced from the first wall to form the chamber therebetween, and a second position relatively closer to the first wall. Advancing the movable wall from the first position to the second position expels fluid from the collapsible reservoir at a substantially constant rate by applying increasing force on the fluid reservoir through the dispensation cycle. Preferably, the first and second walls are provided with non-planar complementary surface configurations for contacting the collapsible reservoir. Retraction mechanisms for retracting the movable wall from the second position to the first position, and user readable indicium of the status of the dispensation cycle are also disclosed.