Abstract:
In the manufacture of a semiconductor, a DBARC layer is deposited upon a wafer to prevent reflection. A photo resist layer is deposited upon the DBARC layer and the wafer is selectively exposed to irradiation. The irradiation generates photo acid (H+ ions) in the exposed areas of the photo resist and DBARC. In order to provide better resolution in the DBARC for micro-features, an electric field is generated vertically through the coated wafer before or during post exposure baking (PEB) to create a uniform vertical distribution of H+ ions though the DBARC. The coated wafer is then developed to remove either the unexposed portions, or exposed portion of the DBARC. The cavities formed by the developer have side walls that are substantially vertical as a result of the uniform vertical distribution of the H+ ions.
Abstract:
A method for manufacturing a thin film transistor (TFT) includes the steps of: providing a substrate (1); and forming a TFT circuit on the substrate using laser-induced chemical vapor deposition (LCVD). Detailedly, the method includes providing the bare substrate, cleaning the substrate with cleaning liquid, and successively forming a gate electrode (2), a gate oxide layer (3), a source electrode (5), and a drain electrode (6) on the substrate by LCVD, thus obtaining the thin film transistor. The forming steps may be controlled by one or more computer programs. The LCVD can be pyrolytic LCVD, photolytic LCVD, or photophysical LCVD. The method is simple and inexpensive.
Abstract:
Key to the present invention is the subsequent use of two layers of different positive photoresists, possessing different exposure wavelength sensitivities. It is a general object of the present invention to provide a new and improved method of forming semiconductor integrated circuit devices, and more specifically, in the formation of self-aligned dual damascene interconnects and vias, which incorporates two positive photoresist systems, which have different wavelength sensitivities, to form trench/via openings with only a two-step etching process. In addition, the two layers of photoresist exhibit different etch resistant properties, for subsequent selective reactive ion etching steps. The use of a “high contrast” positive photoresist system has been developed wherein the resist system exposure sensitivity is optimized for wavelengths, deep-UV (248 nm) for the top layer of resist, the trench pattern, and I-line (365 nm) for the bottom layer of resist, the via pattern. The resist system provides a process in dual damascene for trench/via formation and has the following properties: selective etch resistance, thermal stability during processing, ease of processing and developing, and good adhesion properties.
Abstract:
A process for the skeletal isomerization of olefins wherein the olefins are contacted with a SKISO-11 alumina base catalyst to convert into isomerized products effectively under the conversion conditions comprising a temperature of above 200.degree. C. to about 650.degree. C., the pressure of 0.3 to about 10 atmospheres and a molar ratio of hydrogen or nitrogen to olefins feed from 0 to about 10.
Abstract:
A vehicle-end database management system is revealed. The vehicle-end database management system includes a read/write controller and a vehicle-end database manager. Data related to vehicles is written into the vehicle-end database manager by the read/write controller. Or data related to vehicles is read from the vehicle-end database manager by the read/write controller. Thus end-users can get the data related to vehicles timely so as to manage vehicles conveniently.
Abstract:
An integrated circuit (IC) film for a smart card is provided. The IC film includes a flexible printed circuit (FPC) board, first electrical contacts, second electrical contacts, and an IC chip. The first electrical contacts are disposed on a first side of the FPC board, and the second electrical contacts are disposed on a second side of the FPC board. The IC chip is disposed on the FPC board and bonded to the leads of the FPC board to thereby form electrical connection. The total thickness of the FPC board and the chip is not larger than 0.5 mm.
Abstract:
A cable installation assembly includes a connector, a power wire, a ground wire and two signal wires. The connector includes a base, having a plurality of terminal containing grooves formed in the base and arranged separately adjacent to each other. The power wire includes a power core and a power terminal electrically coupled to power core, and each power terminal is plugged into each corresponding terminal containing groove. The ground wire includes a grounding core and a grounding terminal electrically coupled to the grounding core and plugged into the terminal containing groove. The signal wire includes a signal core and a signal terminal electrically coupled to signal core, and the two signal terminals are plugged into the terminal containing grooves respectively and not arranged adjacent to each other, so that signals can be transmitted without interfering with one another.
Abstract:
A cable connector joint fastening structure includes a male connector, a female connector, and a fastener. The male connector includes a male terminal body with a male terminal joint, a freely rotating screw sleeve locked around the external periphery of the male terminal joint. The female connector includes a female terminal body with a female terminal joint, and an insert space formed in the female terminal joint for inserting the male terminal joint, and the screw sleeve is screwed and coupled to the female terminal joint. The fastener includes a pivot portion formed at an external side of the female connector, and a locking arm pivotally installed onto the pivot portion, extended towards the male terminal body, disposed across the screw sleeve, and locked to the male connector.
Abstract:
An electronic vehicle license is installed on a vehicle to store a record and insurance data of the vehicle, and a reading and writing control device is provided for an authority/official organization to read and write data into the electronic vehicle license; the electronic vehicle license includes a storage unit, a non-contact transferring unit, and a central processing unit; the reading and writing control device includes a central controlling unit, which has a weight assigned thereto in accordance with a jurisdiction of the authority that is authorized to use the reading and writing control device so that the central controlling unit is allowed to handle certain categories of data; the reading and writing control device further includes an encrypting and decrypting unit, a non-contact transferring unit, and a displaying unit to show the data of the vehicle license.
Abstract:
A method for making reverse osmosis permeate water and mineral water from deep seawater includes the steps of: a) sand-filtering or ultra-filtering the deep seawater; b) conducting a first nano-filtering step to nano-filter the deep seawater after the step a) to obtain first nano-filtration permeate water and first nano-filtration concentrated water; c) filtering the first nano-filtration permeate water using a reverse osmosis apparatus to obtain reverse osmosis permeate water and reverse osmosis concentrated water; and d) treating the first nano-filtration concentrated water by electrodialysis to obtain anion-rich water, cation-rich water, and mineral water.