Abstract:
An idle mode UE can RACH to a cell different from the cell paging the UE. The UE can be allocated additional time to respond to all cells in the neighborhood to identify the cell in which to RACH. Interference cancellation can occur at different rates based on whether the UE is in connected mode or idle mode. The time to respond to the page can be a function of a paging cycle. Additionally, a variable bias may promote early handoff to lower power cells and late handoff to high power cells.
Abstract:
Methods and apparatus for beamforming for femtocells, such as in LTE wireless networks, to provide inter-cell coordination and interference mitigation are disclosed. A macrocell user equipment (UE) may determine information regarding an interfering femtocell node, such as a home eNodeB (HeNB). The information may be sent directly or indirectly, such as by a backhaul communication link, to the HeNB. The HeNB may adjust an output based on the information. The information may include spatial channel information, which may be used for beamforming at the HeNB output so as to mitigate interference in the direction of the UE.
Abstract:
Methods and apparatuses for wireless communication are provided. In an aspect, the method includes receiving a plurality of channel quality reports based on a multiple description coding schedule and determining a transmission parameter based on the plurality of channel quality reports. In another aspect, the method includes receiving a family of codebooks organized based on a transmission rank, and reporting, using a multiple description coding scheme, a channel quality parameter using a codebook entry from the family of codebooks.
Abstract:
Certain aspects of the present disclosure relate to techniques for generating likely demodulation candidates using Vector Candidate Sampling (VCS). VCS is used to generate high likelihood candidates for Multiple Input Multiple Output (MIMO) demodulation that approaches optimal maximum a posteriori (MAP) performance with reasonable complexity. A receive data vector is recorded corresponding to a signal received at a MIMO receiver. A plurality of likely candidates are determined for MIMO demodulation via VCS, based at least on the receive data vector. Determining the likely candidates may include perturbing the receive data vector for each candidate based on a pre-determined perturb vector, and estimating a corresponding transmit data vector based at least on the perturbed receive data vector for the candidate and an estimator matrix, wherein the likely candidate comprises the estimated data vector.
Abstract:
Techniques for transmitting pilot and for processing received pilot to obtain channel and interference estimates are described. A terminal may generate pilot symbols for a first cluster in a time frequency block based on a first sequence and may generate pilot symbols for a second cluster in the time frequency block based on a second sequence. The first and second sequences may include common elements arranged in different orders and may be considered as different versions of a single sequence. The terminal may transmit the pilot symbols in their respective clusters. A base station may obtain received pilot symbols from multiple clusters in the time frequency block. The base station may form each of multiple basis vectors with multiple versions of the sequence assigned to the terminal and may process the received pilot symbols with the multiple basis vectors to obtain a channel estimate for the terminal.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive, in an active state, a set of downlink grants or a set of uplink grants. The UE may transition from the active state to an inactive state based at least in part on satisfaction of a set of threshold conditions during the active state, the set of threshold conditions including at least one of a quantity of downlink grants in the set of downlink grants, a quantity of uplink grants in the set of uplink grants, or an inactivity time. Numerous other aspects are described.
Abstract:
Apparatus, methods, and computer program products for serving cell measurement based on CSI-RS RRM are provided. An example apparatus may transmit, to a base station, an indication indicating support for reporting one or more serving cell channel state information reference signal (CSI-RS) radio resource management (RRM) measurements independent of non-serving cell CSI-RS RRM measurements. The example apparatus may receive, from the base station, a configuration of layer 3 measurement resources. The example apparatus may perform, based on the configuration of the layer 3 measurement resources, the one or more serving cell CSI-RS RRM measurements. The example apparatus may transmit, to the base station, the one or more serving cell CSI-RS RRM measurements for a serving cell.
Abstract:
A user equipment (UE) may make a joint decision of adaptive receive diversity (ARD) and adaptive transmit diversity (ATD) configurations, including transmit (Tx) and receive (Rx) antennas selection and/or blanking based on downlink (DL) and uplink (UL) traffic conditions. The UE may disable at least one Tx chain for a transmission of a codebook-based sounding reference signal (SRS) (SRS-CB) based on one or more of at least one DL traffic condition or at least one UL traffic condition, and transmit, to a base station, upon disabling the at least one Tx chain, the SRS-CB via an antenna associated with at least one active Tx chain.
Abstract:
Methods, systems, and devices for wireless communications are described. In some wireless communications systems, a user equipment (UE) and a network entity may utilize multi-port mobility reference signals to assist with spatial based mobility procedures. The UE may receive a reference signal that is associated with multiple antenna ports. The UE may measure a multi-dimensional channel response based on the reference signal. The multi-dimensional channel response may be associated with measured channel metrics corresponding to the multiple antenna ports. The UE may transmit a report that includes a channel measurement vector based on the multi-dimensional channel response. The channel measurement vector may indicate multiple measured channel metrics for one or more dimensions of the multi-dimensional channel response. The network entity may transmit a message that indicates one or more metrics associated with mobility management for the UE based on the report that indicates the channel measurement vector.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may measure a first energy level of a demodulation reference signal (DMRS). The UE may measure a second energy level of at least one of a tracking reference signal (TRS) or a synchronization signal block (SSB). The UE may determine, based at least in part on the first energy level and the second energy level, a DMRS signal-to-noise ratio (SNR). The UE may perform, based at least in part on the DMRS SNR, channel estimation for a physical channel associated with a communication to determine an estimated channel. The UE may perform, based at least in part on the estimated channel, demodulation processing for the communication. Numerous other aspects are described.