Abstract:
A mobile communication network includes a plurality of access nodes that can serve different roles in support of a communication session with a mobile station. An access node can serve as a connecting node that receives access requests the mobile station, as an anchor node to anchor a radio packet connection with a core network for the communication session; or as a primary node to store session information for the communication session. When the communication session is established, the anchor node for the communication session may select another access node to serve as the primary node. Session information can be stored at both the anchor node and primary node so that data can be delivered to the mobile station if either one of the anchor node and primary node are available.
Abstract:
In a mobile communication network, the call context for an active call is managed in a distributed manner following a cell change. When a mobile station migrates from one access node (AN) to another during the course of a call, the call state variables are transferred to the new serving AN. Additionally, a mapping table is transferred to the new serving AN indicating the location of buffered data. The mapping table reduces the amount of data that needs to be transferred to the new serving AN.
Abstract:
Disclosed is a method of retrieving constant values. The method comprises compiling key-value pairs into a unified regular expression, evaluating the unified regular expression against a transformed input string to match a particular key and extracting the constant value associated with that particular key. The input string in transformed by linking different tags associated with each key-value pair in the unified regular expression into a single linked tag and linking the single linked tag to the input string. Additionally, the method provides for associating the constant value in each key-value pair with an un-fixed key (i.e., a unique regular expression) as opposed to a fixed key, so that different input strings can be matched to the same key.
Abstract:
A wireless communication network has radio resources for use to support calls over circuit switched (CS) and packet switched (PS) channels. The network uses such radio resources to first support CS calls and thereafter uses the leftover radio resources to support PS calls. The present invention provides method and apparatus that effectively schedule and support incoming CS calls based on frame-offset selection so as to maximize the leftover radio resources that could be used to support PS calls.
Abstract:
A wireless communication network includes a base station system that transmits sector congestion information to influence mobile station sector selection processing. In an exemplary embodiment, where at least some of the mobile stations being supported by the network autonomously select the network sector from which they wish to receive forward link packet data transmissions, an exemplary base station influences that sector selection processing by transmitting congestion information on a per sector basis. Complementing that transmission by the network, an exemplary mobile station incorporates consideration of the sector congestion information into its autonomous sector selection processing logic. Thus, where potentially large numbers of mobile stations individually select the “best” sector from a candidate set of sectors, the network can perform load balancing by advertising sector congestion levels, so that mobile stations can choose (or avoid choosing) a given sector based at least in part of the congestion information.
Abstract:
A base station inserts an overhead message into a broadcast stream transmitted to a mobile station. To support autonomous soft handoff by the mobile station, the base station inserting the overhead message sends a notification message to one or more of the base stations transmitting the same broadcast stream. The notification message indicates the time when the overhead message will be sent and the duration and/or length of the overhead message. The broadcast channel may be divided into multiple time slots to support mixed flows. Base stations supporting a mobile station in soft handoff can agree on the time slots allocated for a designated broadcast stream.
Abstract:
A collaborative focused crawler crawls documents on a network locating documents that match multiple focus topics. The collaborative crawler comprises a fetcher and a focus engine. The fetcher prioritizes which documents to crawl based on a set of rules, obtains documents from the network, and outputs crawled documents to the focus engine. The focus engine determines whether a fetched document is relevant to any of the multiple focus topics. The focus engine determines whether fetched documents are disallowed. If a fetched document is disallowed, the present system may place the URL for that web document in a blacklist, a list of URLs that may not be crawled. URLs may be disallowed if they match a disallowed topic or if they fail a set of rules designed for a web space focus, for example, domain rules, IP address rules, and prefix rules.
Abstract:
A reverse link rate control method and apparatus provide first rate control commands as the primary rate control for general, ongoing control of the reverse link rates of one or more mobile stations. These first rate control commands comprise, for example, periodically transmitted common rate control commands that are generated as a function of reverse link loading and are used to control the reverse link rates of mobile stations whose service requirements currently do not require targeted reverse link rate control. The exemplary method and apparatus further provide second rate control commands on an as needed basis, that are sent to targeted ones of the mobile stations to meet the specific Quality-of-Service requirements at individual mobile stations, or groups of mobile stations. Supplemental rate control channels can be assigned and released dynamically to targeted mobile stations to provide supplemental rate control on an as-needed basis.
Abstract:
Provisioning and access control for communication nodes involves assigning identifiers to sets of nodes where the identifiers may be used to control access to restricted access nodes that provide certain services only to certain defined sets of nodes. In some aspects provisioning a node may involve providing a unique identifier for sets of one or more nodes such as restricted access points and access terminals that are authorized to receive service from the restricted access points. Access control may be provided by operation of a restricted access point and/or a network node. In some aspects, provisioning a node involves providing a preferred roaming list for the node. In some aspects, a node may be provisioned with a preferred roaming list through the use of a bootstrap beacon.
Abstract:
In a handover operation an access terminal is handed over from a source access point to a target access point. To facilitate efficient identification of a target access point, a handover operation may be initiated by the target access point. A candidate frequency search also may be invoked to confirm that an access terminal identified by a target access point for a handover is in the vicinity of the target access point. A source access point may verify whether an access terminal is in a vicinity of a target access point to determine whether to perform a handover operation. A source access point may handle potential ambiguity between several target access points by sending handover commands to each of these target access points. An access terminal also may assist in the determination of whether to perform a handover operation.