Abstract:
Midamble codes are selected in a wireless time division duplex communication system. At least one channelization code is assigned to a user equipment. A mapping is provided between midamble codes and channelization codes. At least one midamble code is mapped to a plurality of channelization codes having a same spreading factor. The midamble code mapped to the at least one channelization code to the user equipment is selected. A communication burst is formed with the assigned at least one channelization code and the selected midamble code.
Abstract:
A receiver for the CDMA system, in order to reduce a power consumption during a suspension period of intermittent receiving operation, monitors a suspension period t1 by means of a low-power timer 51 so that a VC-TCXO 1, a reference signal group generation unit 2 and a receiving unit 3 are turned off and a modem unit 4 is set to a sleep state. Upon resumption of receiving operation, a high-accuracy timer 44 is supplied with a start (d) to require counting of time t3 and a part of a received signal is stored. A PN code phase of stored data is calculated in a PN code phase calculator 46 during a period t3 to obtain an indication value i for a phase deviation. State vectors for short code and long code and further a reception time t4 are calculated on the basis of the indication value i to be set. When the high-accuracy timer 44 counts t3 and produces 0V(d), demodulation operation by a rake demodulation unit 40, a demultiplexing unit 41 and a descrambler unit 42 is started in accordance with the setting and is continued during the reception time t4.
Abstract:
The invention relates to a method for synchronizing the phase of a code available at a receiving unit with the phase of a corresponding code of which samples are received at said receiving unit. The synchronization comprises comparing a received code sample with different samples of the available code, the respective sample of the available code being shifted in phase for each comparison by a predetermined amount until a correspondence with the received code sample is determined or until an interrupt of the synchronization occurs. In order to accelerate the synchronization, it is proposed to continue the synchronization after an interrupt with a newly received code sample and with available code samples proceeding from the code phase of the available code reached in the synchronization before the interrupt. The invention relates equally to a corresponding receiving unit and to a communication system comprising such a receiving unit.
Abstract:
Techniques are provided for synchronizing a wakeup schedule for a first module and a wakeup schedule for a CDMA module in a wireless mobile unit operable in a synchronous communication system. In one embodiment, a next CDMA wakeup time is determined. A new wakeup time for the first module can then be synchronized to a next CDMA wakeup time when a next CDMA wakeup time is earlier than a next wakeup time for the first module
Abstract:
A method and apparatus for system time alignment is provided. The method and apparatus for a system time alignment provides synchronization between system components even when one or more system components remains in a quiescent mode for an extended period of time. Compensation for changes in propagation delay between system components is provided, even when such changes in propagation delay occur while one or more system components is in a quiescent mode. A searcher (402) searches a raw data signal for a maximal energy, and a shifter (403) shifts a spreading sequence a plurality of times. An accumulator (408) accumulates a plurality of sets of symbols to produce a plurality of symbol energies. A time offset calculator (410) calculates an updated time offset value and an updated system time value and updates a reference position counter (202) and a system time counter (205), respectively, with these values.
Abstract:
A method and apparatus for searching for neighboring base stations by waking from a power-saving sleep mode to receive an incoming signal. The incoming signal is received and at least a portion of the incoming signal is stored. The stored information signal is then processed with each of several different codes to determine a power level corresponding to each of the different codes.
Abstract:
Techniques for cell reacquisition and reselection that increases time spent in low-power mode while effectively monitoring neighbor cells are disclosed. In one aspect, one or more windows around the expected location of the serving cell are searched in the period of time prior to the page indicator. In another aspect, intra-frequency neighbor cells are searched first to determine reselection candidates. Various other aspects are also presented. These aspects have the benefit of increasing time spent in low-power mode, thereby reducing power consumption and increasing standby time.
Abstract:
A service option overlay for a CDMA wireless communication in which multiple allocatable subchannels are defined on a reverse link by assigning different code phases of a given long pseudonoise (PN) code to each subchannel. The instantaneous bandwidth needs of each on-line subscriber unit are then met by dynamically allocating none, one, or multiple subchannels on an as needed basis for each network layer connection. The system efficiently provides a relatively large number of virtual physical connections between the subscriber units and the base stations on the reverse link for extended idle periods such as when computers connected to the subscriber units are powered on, but not presently actively sending or receiving data. These maintenance subchannels permit the base station and the subscriber units to remain in phase and time synchronism in an idle mode and also request additional channels. This in turn allows fast acquisition of additional subchannels as needed by allocating new code phase subchannels. Preferably, the code phases of the new channels are assigned according to a predetermined code phase relationship with respect to the code phase of the corresponding maintenance subchannel.
Abstract:
Ending of a sleeping period is managed by, for one portion thereof, first clock signals being counted by a first clocking section, and for a remaining portion thereof, second clock signals being counted by a second clocking section. At this time, a count number by which the first clock signals are counted and a count number by which the second clock signals are counted are corrected on the basis of changes of a center of gravity in a distribution of timings of a plurality of paths.
Abstract:
The present invention concerns a new type of rake receiver, namely, a multimode rake receiver, which may be included within either a mobile station or a base station, and which has dynamic pilot signal searching and multipath reception and combining capability, for CDMA, cdma2000, W-CDMA, or other mobile communication systems. The adaptive, multimode rake receiver includes a network interface, a plurality of adaptive multimode rake fingers, and a multimode processor. Each adaptive multimode rake finger and the multimode processor are responsive to first configuration information (a first mode signal) to configure for a path reception functional mode and are further responsive to second configuration information (a second mode signal) to configure for a searcher functional mode, providing the multimode rake receiver with acquisition, traffic, and idle modes. In the preferred embodiment, the multimode rake receiver is implemented using a new category of integrated circuitry for adaptive or reconfigurable computing, providing a plurality of heterogeneous computational elements coupled to an interconnection network, to form adaptive and reconfigurable multimode rake fingers and a multimode processor, for a plurality of different functional modes, including pilot signal searching and multipath reception and combination.