Abstract:
Described herein are aspects related to communicating with a first radio access technology (RAT) and a second RAT, wherein a set of multi-input, multi-output (MIMO) resources is allocated for communication between a mobile station (MS) and a base station (BS) of the first RAT. A request message is sent to the BS of the first RAT requesting reallocation of at least a portion of the set of MIMO resources in a scan duration. During the scan duration, signals are received from a BS of the second RAT over a reallocated subset of the set of MIMO resources and communications occur with the BS of the first RAT over a non-reallocated subset of the set of MIMO resources. During a normal duration subsequent to the scan duration, communications occur with the BS of the first RAT using the set of MIMO resources including at least some of the reallocated subset of the set of MIMO resources.
Abstract:
Various aspects directed towards expediting an inter-RAT (radio access technology) reselection are disclosed. A user equipment (UE) operates according to a first RAT and utilizes an evolved multimedia broadcast multicast service (eMBMS) via the first RAT. A second RAT, which is unable to support eMBMS, is selected such that operation of the UE transitions from the first RAT to the second RAT. A reselection of the first RAT is then expedited by modifying at least one of a dormancy timer value initialization, a reselection timer value initialization, or a frequency priority.
Abstract:
Methods and apparatuses are presented for determining a location of a mobile station. In some embodiments, a mobile station may acquire at least one attribute of a reference base station to obtain the identity of the reference base station. A first and a second locally unique attribute of a local base station may then be acquired. The mobile station may then compute a distance metric from the mobile station to the reference base station based on the at least one attribute, and the first and second locally unique attributes. The location of the mobile station may be determined based at least in part on the distance metric. In some embodiments, the distance metric may include a number of how many base stations away (i.e. “hops” or number of handovers) the mobile station is from the reference base station.
Abstract:
Techniques are provided for reducing delay during streaming transmissions. For example, a method may include receiving a stream of data segments. The method may include establishing a first group of segments based on the data segments, and generating a first table of information. The method may include transmitting the first table and the first group of segments, and establishing a second group of segments based on the data segments, the second group of segments including a partial overlap of data segments included in the first group of segments. The method may include generating a second table of information, and transmitting the second table and a collection of segments that includes data segments from the second group that were not part of the first group.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus receives a user service description (USD) message. When a frequency indicated in the USD message is not a current frequency, the apparatus determines that a system information message is received, determines that the frequency indicated in the USD message is included in the system information message, determines that the frequency is a neighboring cell frequency, sets a priority of the frequency to a highest priority, and measures a signal strength of the frequency when the frequency is included in the system information message, performs a cell reselection determination procedure based on the signal strength of the frequency, performs cell reselection to the neighboring cell based on a result of the cell reselection determination procedure, and acquires the multicast service in the neighboring cell on the frequency.
Abstract:
A process includes determining an unallocated communication frame of a first radio access technology (RAT) using a dedicated physical channel (DPCH) with a time division multiplexing scheme. Measurements are then performed to identify for a second RAT during a time allocated to the unallocated communication frame.
Abstract:
Methods, systems, and devices are described for concurrently performing handoff-related measurements for neighbor cells using multiple input multiple output (MIMO) antenna resources. In one example, a mobile device is in communication with a serving cell. Handoff-related measurements of first wireless signals from a first neighbor cell are performed. The first wireless signals are received at first MIMO antenna resources of a device. Handoff-related measurements of second wireless signals from a second neighbor cell are performed, as well. The second wireless signals are received at second MIMO antenna resources concurrently with the first wireless signals received at the first MIMO antenna resources. The first handoff-related measurements and the second handoff-related measurements may be performed during a scan interval. A type of handoff-related measurement to perform may be determined based on a determined length of the scan interval.
Abstract:
Aspects of the present disclosure are directed to a methods and systems operable by a network entity for wireless communication, that includes determining that User Equipment (UE) is in idle mode and receiving eMBMS (evolved Multimedia Broadcast and Multicast Service); and based on the determining, activating a power optimization procedure in order to reduce power consumption of the UE. Examples of a power optimization procedures include a single or multi-level hardware shut down procedure, lowering the clock rate of hardware, and shutting down a communication bus during periods of non-use.