Abstract:
An apparatus and method for channel switching comprising encapsulating a plurality of IP datagrams associated with a plurality of real time audio/visual (A/V) streams or a plurality of file objects onto a plurality of MPE sections; inserting the plurality of MPE sections into one of a plurality of elementary streams; and multiplexing the plurality of elementary streams associated with the plurality of real time A/V streams or the plurality of file objects into a plurality of non-consecutive bursts, wherein the plurality of elementary streams are adjacent in a channel line-up. In one aspect, the plurality of non-consecutive bursts is transmitted to a DVB-H receiver with a limited memory size for enabling fast channel switching. In one aspect, the channel line-up is presented in an electronic service guide (ESG).
Abstract:
Aspects of the present disclosure are directed to a methods and systems operable by a network entity for wireless communication, that includes determining that User Equipment (UE) is in idle mode and receiving eMBMS (evolved Multimedia Broadcast and Multicast Service); and based on the determining, activating a power optimization procedure in order to reduce power consumption of the UE. Examples of a power optimization procedures include a single or multi-level hardware shut down procedure, lowering the clock rate of hardware, and shutting down a communication bus during periods of non-use.
Abstract:
An apparatus and method for channel switching comprising encapsulating a plurality of IP datagrams associated with a plurality of real time audio/visual (A/V) streams or a plurality of file objects onto a plurality of MPE sections; inserting the plurality of MPE sections into one of a plurality of elementary streams; and multiplexing the plurality of elementary streams associated with the plurality of real time A/V streams or the plurality of file objects into a plurality of non-consecutive bursts, wherein the plurality of elementary streams are adjacent in a channel line-up. In one aspect, the plurality of non-consecutive bursts is transmitted to a DVB-H receiver with a limited memory size for enabling fast channel switching. In one aspect, the channel line-up is presented in an electronic service guide (ESG).
Abstract:
Aspects of the present disclosure are directed to a user equipment, an RNC, or an application operable in a wireless communications network and methods in which the user equipment can be transitioned into a dormant state controlled by an application driven scheme. According to the application driven scheme, a request is received from an active process at an application server to trigger a wireless device to enter a dormant state, and network traffic information corresponding to a time interval is received from a wireless device. If the network traffic information indicates that the active process is solely responsible for network traffic at a transport layer of the wireless device during the time interval, one or more commands are transmitted to the wireless device such that the wireless device enters the dormant state. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Aspects of the present disclosure are directed to a methods and systems operable by a network entity for wireless communication, that includes determining that User Equipment (UE) is in idle mode and receiving eMBMS (evolved Multimedia Broadcast and Multicast Service); and based on the determining, activating a power optimization procedure in order to reduce power consumption of the UE. Examples of a power optimization procedures include a single or multi-level hardware shut down procedure, lowering the clock rate of hardware, and shutting down a communication bus during periods of non-use.
Abstract:
Aspects of the present disclosure are directed to a user equipment, an RNC, or an application operable in a wireless communications network and methods in which the user equipment can be transitioned into a dormant state controlled by an application driven scheme. According to the application driven scheme, a request is received from an active process at an application server to trigger a wireless device to enter a dormant state, and network traffic information corresponding to a time interval is received from a wireless device. If the network traffic information indicates that the active process is solely responsible for network traffic at a transport layer of the wireless device during the time interval, one or more commands are transmitted to the wireless device such that the wireless device enters the dormant state. Other aspects, embodiments, and features are also claimed and described.