USER EQUIPMENT (UE), EVOLVED NODE-B (ENB) AND METHODS FOR DYNAMIC HYBRID AUTOMATIC REPEAT REQUEST (HARQ)

    公开(公告)号:US20190335536A1

    公开(公告)日:2019-10-31

    申请号:US16408016

    申请日:2019-05-09

    Abstract: Embodiments of a User Equipment (UE), Evolved Node-B (eNB) and methods for communication are generally described herein. The UE may receive downlink control information (DCI) that schedules a transport block (TB) that includes multiple code blocks. The UE may determine a transport block size (TBS) based on the DCI. The UE may attempt to decode the code blocks. The UE may, if the TBS is greater than a predetermined threshold: bundle the code blocks into code block groups for hybrid automatic repeat request (HARQ) acknowledgement; and transmit a HARQ bit per code block group. The UE may, if the TBS is less than or equal to the threshold, transmit a HARQ bit that indicates whether a decode failure has occurred for at least one of the code blocks of the TB.

    Uplink resource collision reduction in FD-MIMO

    公开(公告)号:US10454623B2

    公开(公告)日:2019-10-22

    申请号:US15572994

    申请日:2015-12-14

    Abstract: Disclosed herein are apparatuses, systems, and methods using or implementing full-dimension multi-input multi-output (FD-MIMO) and providing collision reduction by transmitting data to an evolved Node-B (eNB) on an uplink (UL) resource; and receiving an acknowledgement (ACK) or negative acknowledgment (NACK) on a physical HARQ-ACK indicator channel (PHICH), responsive to transmitting the data on the UL resource. The PHICH may be mapped to a least physical resource block (PRB) that is offset by a PHICH offset. The PHICH offset may include a group offset and a sequence offset relative to a transport block (TB) index and first PRB index of a corresponding uplink shared channel. Other embodiments are described.

    Devices and methods for HARQ-ACK feedback scheme on PUSCH in wireless communication systems

    公开(公告)号:US10419178B2

    公开(公告)日:2019-09-17

    申请号:US15624324

    申请日:2017-06-15

    Abstract: Devices and methods of reducing overall Hybrid Automatic Repeat Request-Acknowledgment (HARQ-ACK) of user equipment (UE) using a large amount of carrier aggregation are generally described. The UE may receive a subframe from an enhanced NodeB (eNB). The subframe may contain a physical downlink control channel (PDCCH) formed in accordance with a Downlink Control information (DCI) format. The DCI format may comprise a Downlink Assignment Index (DAI) for Time Division Duplexed (TDD) and Frequency Division Duplexed (FDD) operation. The UE may determine, dependent on the DAI, a number and ordering of Hybrid Automatic Repeat Request-Acknowledgment (HARQ-ACK) bits to be transmitted on a Physical Uplink Shared Channel (PUSCH) and subsequently transmit the HARQ-ACK bits.

    Systems, methods and devices for radio access technology coordination

    公开(公告)号:US10405331B2

    公开(公告)日:2019-09-03

    申请号:US15542032

    申请日:2015-09-21

    Abstract: User equipment and base stations can enable access to secondary radio access technology (S-RAT), a cross radio access technology (RAT) scheduling between a primary RAT (P-RAT) and a secondary RAT (S-RAT) and/or cross-scheduling in a same RAT with different optimizations and use/partition for different applications (e.g., a regular partition with a carrier resource (referred to as P-RAT) and an additional resource partition/region for device-to-device (D2D) or machine-type-communication (MTC) application (referred to as S-RAT)). Cross-RAT/partition-scheduling can include when S-RAT is scheduled by P-RAT or when P-RAT is scheduled by S-RAT.

    Device, system and method of quasi-orthogonal multiple access

    公开(公告)号:US10390292B2

    公开(公告)日:2019-08-20

    申请号:US15553363

    申请日:2015-10-19

    Abstract: An eNodeB (eNB), user equipment (UE) and method of providing a quasi-orthogonal multiple access (QOMA) resources are generally described. The UE receives allocation of orthogonal multiple access (OMA) and non-OMA (NOMA) resources. The UE transmits data up to a maximum NOMA rate and NOMA Modulation and Coding Scheme (MCS) using the NOMA resources without receiving an explicit transmission grant from the eNB. The eNB may allocate multiple NOMA regions associated with different maximum rates, MCSs, number of UEs, UE types, applications and sizes. If the data exceeds the NOMA conditions or the UE is unable to transmit data using the allocated NOMA resources or does not receive an acknowledgement from the eNB regarding reception of the transmitted data, the UE may request an explicit grant of the OMA resources from the eNB and, upon receiving an allocation of the OMA resources, subsequently transmit the data using the allocated OMA resources.

    Inter-beam mobility control in MIMO communication systems

    公开(公告)号:US10333608B2

    公开(公告)日:2019-06-25

    申请号:US15747027

    申请日:2015-12-22

    Abstract: Apparatus, systems, and methods to implement inter-beam mobility control in MIMO communication systems are described. In one example, apparatus of an evolved Node B (eNB) comprises circuitry to configure a periodic transmit (TX) beamforming process for a user equipment (UE), wherein a plurality of different TX beams are used in a plurality of different beamforming reference signals (BRS), receive, from the UE, a selected TX beam index which identifies a selected TX beam, and schedule subsequent transmissions to the UE on the selected TX beam. Other examples are also disclosed and claimed.

Patent Agency Ranking