Abstract:
In a multiple interface, low power and lossy network comprising a plurality of nodes, a low transmission power and medium transmission power topology are defined for the network and a channel-hopping schedule is defined for the devices operating in each topology. A sender determines that data is capable of being transmitted via a link on the low transmission power topology. The sender determines the transmission parameters for the transmission of the data over the link on the low transmission power topology and determines a low transmission power channel for transmission of the data. The sender transmits the determined channel and the transmission parameters to the receiver. The sender transmits the data via the determined channel in the low transmission power topology.
Abstract:
A node in a Low power and Lossy Network (LLN) is managed by monitoring a routing configuration on a node in a LLN. A triggering parameter that is used to invoke an address change on a child node is tracked and a threshold against which to compare the triggering parameter is accessed. The triggering parameter is compared to the threshold. Based on results of comparing the triggering parameter to the threshold, it is determined that an address change at the child node is appropriate. An address change of a child node appearing in the routing configuration is invoked based on the determination that an address change is appropriate.
Abstract:
In one embodiment, a training request is sent to a plurality of nodes in a network to cause the nodes to generate statistics regarding unicast and broadcast message reception rates associated with the nodes. The statistics are received from the nodes and a statistical model is generated using the received statistics and is configured to detect a network attack by comparing unicast and broadcast message reception statistics. The statistical model is then provided to the nodes and an indication that a network attack was detected by a particular node is received from the particular node.
Abstract:
In one embodiment, an ingress device of a first routing domain in a computer network buffers received packets, and in response to receiving a request from a particular node indicating that the particular node has migrated from the first routing domain to a second routing domain, determines how to reach the particular node in the second routing domain, and forwards the buffered received packets to the particular node in the second routing domain, accordingly. In another embodiment, a device in the first routing domain migrates from the first routing domain to a second routing domain, and determines its new IP address. The device may then send a request to the first ingress router to forward buffered packets for the device to the second routing domain at the new IP address, and may thus receive buffered packets forwarded from the first ingress router at the device in the second routing domain.
Abstract:
In one embodiment, a device receives a destination unreachable message originated by a particular node along a first source route, the message carrying an encapsulated packet as received by the particular node. In response, the device may determine a failed link along the first source route based on a tunnel header and the particular node. Once determining an alternate source route without the failed link, the device may re-encapsulate and re-transmit the original packet on an alternate source route with a new tunnel header indicating the alternate source route (e.g., and a new hop limit count for the tunnel header and an adjusted hop limit count in the original packet).
Abstract:
In one embodiment, a node may determine a trigger for establishing transmission priority on a path through a shared-media communication network for priority traffic to a particular node. As such, the node may generate a path clear message (PCM) that would instruct one or more receiving nodes along the path to suspend transmission for traffic other than the priority traffic for a specified duration, and also to transmit a local non-repeated distributed message to one or more neighbor nodes of each respective receiving node, the local non-repeated distributed message to instruct the neighbor nodes to suspend transmission for the specified duration. After transmitting the PCM along the path to the particular node to establish the transmission priority for the priority traffic along the path through the shared-media network, the priority traffic may be transmitted to the particular node along the path during the transmission priority.
Abstract:
In one embodiment, a particular field area router (FAR), in a local computer network (e.g., a mesh network) having a plurality of FARs, advertises a common subnet prefix assigned to the local computer network into a global computer network. Each of the plurality of FARs of the local computer network is configured to accept any traffic destined to the local computer network, and a tunnel overlay is built among the plurality of FARs. Upon receiving a packet at the particular FAR destined to a particular device in the local computer network, and in response to the particular FAR not having a host route to the particular device, it forwards the packet on the tunnel overlay to another of the plurality of FARs of the local computer network.
Abstract:
In one embodiment, a device in a computer network monitors an alternating-current (AC) waveform of an electrical power source at the device, where the power source is part of a polyphase power source system. Once the device determines a particular phase of the polyphase power source system at the device, then the device joins a directed acyclic graph (DAG) specific to the particular phase. In another embodiment, a device detects a time of a zero crossing of the AC waveform, and may then determine a particular phase of the polyphase power source system at the device based on the time of the zero crossing relative to a corresponding location within a frequency hopping superframe of the computer network.
Abstract:
In one embodiment, statistical information is collected relating to one or both of communication link quality or channel quality in a frequency-hopping network, in which packets are sent according to a frequency-hopping schedule that defines one or more timeslots, each timeslot corresponding to a transmission frequency. Also, a performance metric of a particular transmission frequency corresponding to a scheduled timeslot is predicted based on the collected statistical information. Based on the predicted performance metric, it is determined whether a transmitting node in the frequency-hopping network should transmit a packet during the scheduled timeslot using the particular transmission channel or wait until a subsequent timeslot to transmit the packet using another transmission frequency.
Abstract:
In one embodiment, periodic round-trip probes are executed in a network, whereby a packet is transmitted along a particular communication path from a source to a destination and back to the source. Statistical information relating to the round-trip probes is gathered, and a transmission delay of the round-trip probes is calculated based on the gathered statistical information. Also, an end-to-end transmission delay along an arbitrary communication path in the network is estimated based on the calculated transmission delay of the round-trip probes.