Abstract:
In one embodiment, a management device determines a topology of nodes in a network. Based on the topology, frequency hopping sequences are assigned (and notified) to the nodes such that each particular node of a certain set of the nodes is assigned a frequency hopping sequence on which to transmit that is different than frequency hopping sequences of neighbors and hidden neighbors of that particular node. In another embodiment, a transmitting node first transmits a transmission indication signal on its particular frequency band based on its frequency hopping sequence, and then transmits a message on the particular frequency band. In a further embodiment, a receiving node listening to a plurality of frequency bands may detect the transmission indication signal on the particular frequency band. In response, the receiving node filters out all frequency bands other than the particular frequency band, and receives the following transmission on that particular frequency band.
Abstract:
In one embodiment, a device in a computer network monitors an alternating-current (AC) waveform of an electrical power source at the device, where the power source is part of a polyphase power source system. Once the device determines a particular phase of the polyphase power source system at the device, then the device joins a directed acyclic graph (DAG) specific to the particular phase. In another embodiment, a device detects a time of a zero crossing of the AC waveform, and may then determine a particular phase of the polyphase power source system at the device based on the time of the zero crossing relative to a corresponding location within a frequency hopping superframe of the computer network.
Abstract:
In one embodiment, a management device determines a topology of nodes in a network. Based on the topology, frequency hopping sequences are assigned (and notified) to the nodes such that each particular node of a certain set of the nodes is assigned a frequency hopping sequence on which to transmit that is different than frequency hopping sequences of neighbors and hidden neighbors of that particular node. In another embodiment, a transmitting node first transmits a transmission indication signal on its particular frequency band based on its frequency hopping sequence, and then transmits a message on the particular frequency band. In a further embodiment, a receiving node listening to a plurality of frequency bands may detect the transmission indication signal on the particular frequency band. In response, the receiving node filters out all frequency bands other than the particular frequency band, and receives the following transmission on that particular frequency band.
Abstract:
In one embodiment, a device in a computer network monitors an alternating-current (AC) waveform of an electrical power source at the device, where the power source is part of a polyphase power source system. Once the device determines a particular phase of the polyphase power source system at the device, then the device joins a directed acyclic graph (DAG) specific to the particular phase. In another embodiment, a device detects a time of a zero crossing of the AC waveform, and may then determine a particular phase of the polyphase power source system at the device based on the time of the zero crossing relative to a corresponding location within a frequency hopping superframe of the computer network.