Abstract:
Methods, systems, and devices for wireless communication are described. A wireless system utilizing one or more time-division duplexing (TDD) configured carriers may utilize a dual transmission time interval (TTI) structure (e.g., at the subframe level and symbol-level). The symbol level TTIs may be referred to as low latency (LL) TTIs, and may be organized within LL subframes. A LL subframe may be a subframe that is scheduled for transmissions in one direction (e.g., uplink or downlink, according to a TDD configuration) and may include multiple LL symbols scheduled for both uplink (UL) and downlink (DL) transmissions. Guard periods may be scheduled between adjacent LL symbols that have opposite directions of transmission to enable user equipment (UEs) to transition from receiving mode to transmit mode (or vice versa). The LL subframes may be transparent to receiving devices that do not support LL operations.
Abstract:
Techniques are described for wireless communication. A first method includes receiving from a base station an indication of a set of one or more uplink interlaces of an unlicensed radio frequency spectrum band allocated for a sounding reference signal, and transmitting the sounding reference signal for a user equipment (UE) over the indicated set of one or more uplink interlaces of the unlicensed radio frequency spectrum band. A second method includes receiving an indication of an interlace of an unlicensed radio frequency spectrum band allocated for a physical uplink control channel (PUCCH) transmission, and transmitting a scheduling request and a buffer status report over the indicated interlace.
Abstract:
An enhanced acknowledgement indicator channel is discussed that multiplexes acknowledgement signals for multiple uplink signals from various user equipments (UEs) into the enhanced acknowledgement indicator channel. The channel is divided into a number of paired data and pilot resource element groups that can be precoded independently of one another, such that each paired resource element group is precoded using a different or independent precoding than the other paired resource element groups. If the base station determines a failure to decode any uplink signals, instead of sending acknowledgement signals over the indicator channel, the base station may, instead, generate uplink grants for retransmission of the uplink signals.
Abstract:
Techniques are described for wireless communication. One method includes determining that a cell operates in a shared access radio frequency spectrum, and transmitting signaling information to a mobile device indicating that the cell is prohibited from serving as a primary serving cell based at least in part on the determination that the cell operates in the shared access radio frequency spectrum. Another method includes receiving signaling information at a mobile device from a base station indicating that a cell operating in a shared access radio frequency spectrum is prohibited from serving as a primary serving cell, and identifying the cell as prohibited from serving as a primary serving cell based at least in part on the received signaling information. Another method includes identifying, by a mobile device, a cell operating in a shared access radio frequency spectrum as a secondary serving cell based at least in part on information stored on the mobile device.
Abstract:
Various techniques for receiving broadcast at a mobile broadcast receiver are described. In an aspect, the broadcast receiver provides user notification and/or automatically launches an application based on user preferences. In another aspect, the broadcast receiver improves channel switching time by predicting future channel selection based on real-time monitoring of user inputs. In another aspect, the broadcast receiver supports drag-and-drop user interface. In another aspect, the broadcast receiver provides additional information associated with a selected broadcast stream. In another aspect, the broadcast receiver processes a broadcast stream and sends output data to an external device for further processing and/or display. In another aspect, the broadcast receiver simultaneously displays live content and stored content. In another aspect, the broadcast receiver simultaneously receives multiple broadcast streams for displayed on one or more display units. In another aspect, the broadcast receiver collects user statistics and sends the statistics to a network entity.
Abstract:
Certain aspects of the present disclosure generally relate to techniques for selecting a base graph to be used for wireless communications. Selection can be based on a variety of factors. Abase graph can be used to derive a low-density parity-check (LDPC) code used for encoding a retransmission of an original transmission. An exemplary method generally includes selecting, based on a modulation and coding scheme (MCS) and a resource allocation (RA) for transmitting a codeword, a base graph (BG), from which to derive a low density parity check (LDPC) code for use in encoding data bits in the codeword (e.g., encoding data bits of a bitstream such that some redundant bits are included in the codeword), encoding the data bits to generate the codeword using the LDPC code derived from the selected BG, and transmitting the codeword using the MCS via resources of the
Abstract:
This disclosure provides systems, methods, and devices for wireless communication that support a configuration of with a bandwidth part (BWP). In a first aspect, a method of wireless communication includes receiving an indicator that indicates a configuration associated with a BWP. The configuration indicates a first sub-band of the BWP. The BWP is associated with sub-band full-duplex communication. The method also includes, based on the BWP being allocated to the UE and the configuration, communicating using the first sub-band. Other aspects and features are also claimed and described.
Abstract:
Methods, systems, and apparatuses for wireless communication are described. In some wireless systems (e.g., new radio (NR) systems), a system may employ fixed or variable length uplink burst regions (e.g., in an uplink-centric slot). The base station may semi-statically or dynamically configure a user equipment (UE) or group of UEs for uplink control channel transmissions within an uplink burst region. In semi-static configuration, the UE may determine the uplink control channel transmission based on values transmitted or indicated via higher-layer signaling or based on default values. In dynamic configuration, the UE may receive an indication of actual resources used by the base station in a physical layer message. The UE may transmit using an uplink control channel transmission based on the indication. In some cases, the base station may allocate code division multiplexing (CDM) groups based on which UEs are semi-statically configured and which are dynamically configured.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may identify one or more radio frequency (RF) spectrum bands for full-duplex communications, and may signal an indication of the UE's capability to support full-duplex communications for each RF spectrum band. The UE may further receive one or more configurations for full-duplex communications, which, in some examples, may be based on the UE's indicated capabilities. As an example, the UE may identify a guard band configuration for full-duplex communications, where the guard band configuration may be based on one or more aspects of resources used for the full-duplex communications. In other cases, the UE may identify a transmission hopping or antenna switching configuration for full-duplex communications. In any case, the UE may communicate with a base station in accordance with the one or more configurations and the UE's capabilities.
Abstract:
Methods, systems, and devices for wireless communication are described. A wireless device may identify multiple regions within a subframe, such as one or more uplink regions, one or more downlink regions, and a guard region. The wireless device may identify and communicate during each region based on a timing relationship between the downlink region and the uplink region. For example, the device may expect hybrid automated repeat request (HARQ) feedback for one downlink region in the same subframe based on the proximity to the next uplink region. Another downlink region may not have HARQ feedback in the same subframe. Similarly, uplink regions may or may not be scheduled within the same subframe.