Abstract:
While operating in connected discontinuous reception (C-DRX) mode, a wireless communication device may initiate handover operations when a neighboring base station is determined by the wireless communication device to be a better serving cell than a base station operating as the current serving cell for the wireless communication device. Instead of transmitting a measurement report to the current serving cell, the wireless communication device may select one of the neighboring base stations as the new serving cell, responsive to measurements of the current serving cell and the neighboring cells performed by the wireless communication device during the on-duration of the C-DRX cycle. This enables a longer C-DRX cycle, which leads to the wireless communication device saving more power during non-real-time sensitive background data transmissions, while also avoiding higher handover failure rates and extra Radio Resource Control signaling that may need to be performed as a result of radio link failure.
Abstract:
Methods and apparatus for adaptively adjusting receiver operation during non-continuous (e.g., discontinuous) reception. In one exemplary embodiment, a user device such as a User Equipment (UE) adaptively adjusts its reception mode based on a determined actual error. The reception mode is selected so as to improve reception performance, while still minimizing overall power consumption.
Abstract:
Operating a user equipment (UE) which comprises a first radio that is configured to operate according to a first radio access technology (RAT) and a second RAT. The UE may receive a request to perform a tune away operation for the second RAT while performing measurement for the first RAT (e.g., intra-cell measurement, inter-cell measurement, and/or inter-RAT measurement). Instead of waiting to complete the measurement of the first RAT, the UE may tune the radio to a frequency of the second RAT to perform the tune away operation (e.g., page decoding) for the second RAT. After completing the tune away operation of the second RAT, the UE may tune the radio back to a frequency corresponding to the first RAT in order to continue the measurement operations of the first RAT.
Abstract:
Operating a user equipment (UE) which comprises a first radio that is configured to operate according to a first radio access technology (RAT) and a second RAT. The UE may receive a request to perform a tune away operation for the second RAT while performing measurement for the first RAT (e.g., intra-cell measurement, inter-cell measurement, and/or inter-RAT measurement). Instead of waiting to complete the measurement of the first RAT, the UE may tune the radio to a frequency of the second RAT to perform the tune away operation (e.g., page decoding) for the second RAT. After completing the tune away operation of the second RAT, the UE may tune the radio back to a frequency corresponding to the first RAT in order to continue the measurement operations of the first RAT.
Abstract:
Methods and apparatus for managing radio measurements during discontinuous reception. In one exemplary embodiment, the distribution of Long Term Evolution (LTE) DRX measurements is staggered or distributed across multiple DRX cycles (which may be contiguous or non-contiguous) so as to reduce the transceiver activity and power consumption. The exemplary UE in one implementation only performs a subset of measurements during each DRX cycle. By staggering or distributing cell measurements over multiple DRX cycles, the UE can improve power consumption, while still conforming to measurement requirements.
Abstract:
Methods and apparatuses to use multiple receivers of a wireless communication device for fast return to a first network from a second network after termination of a Circuit Switched Fallback (CSFB) voice call is disclosed. A first receiver of the wireless communication device is used to process the CSFB voice call on the second network, while a second receiver of the wireless communication device is used to determine a strongest suitable cell available on the first network, while the voice call is active. A strongest suitable cell is instantly available to the wireless communication device after the CSFB voice call ends. In some embodiments, the first network is an LTE network, and the second network is a legacy network.
Abstract:
Methods and apparatus for network-based detection and mitigation of hybrid client device reception outage events. For example, in one embodiment, a cellular device uses a single-radio solution to support circuit-switched calls on a CDMA 1X network and packet-switched calls on LTE. Periodically, the cellular device tunes away from LTE and monitors CDMA 1X activity, and vice versa. During these tuned-away periods, the network adjusts operation to mitigate adverse effects (e.g., underutilization of radio resources, synchronization loss, etc.).
Abstract:
A downlink control information (DCI), such as a blanking DCI (bDCI) message may be transmitted by a base station (e.g., eNB) and received by a mobile device (e.g., UE). The bDCI may indicate that the eNB will not transmit a subsequent DCI to the UE for a duration of time. The UE may be in continuous reception mode or connected discontinuous reception (C-DRX) mode. The UE may therefore determine to enter a sleep state or take other action. The bDCI may specify an explicit blanking duration, or an index indicating a blanking duration from a lookup table, and/or the blanking duration (and/or a blanking duration offset value) may be determined in advance, e.g., semi-statically. When the UE is in C-DRX mode, the UE may be configured such that either the sleep/wake period of the C-DRX mode or the blanking period of the bDCI may take precedence over the other.
Abstract:
Disclosed are embodiments for reducing likelihood of selecting a cell identified by a Radio Access Network (RAN) Notification Area ID (RNA ID) that is different from that identifying a last or current serving cell so as to avoid an RNA update procedure; reducing Random Access Channel (RACH) transmissions for an RNA update procedure and a mobile originated (MO) data transmission in response to a Radio Resource Control (RRC) triggered RNA update procedure; and selecting a band or beam in a multi-band/beam cellular system that improves RACH efficiency.
Abstract:
Systems, methods, and mechanisms for performing ROHC header compression on TCP packets with MPTCP option enabled. A compressor may determine that a first portion of the stream of data packets is formatted according to the transmission control protocol (TCP) with a multipath TCP (MPTCP) option enabled. The compressor may establish context with a corresponding decompressor and may operate in one of three modes of compression based on the context. In some embodiments, when the context indicates that the corresponding decompressor supports decompression of TCP data packets with MPTCP option enabled, the compressor may operate in a first or second mode of compression. In some embodiments, when the context indicates that the corresponding decompressor does not support decompression of TCP data packets with MPTCP option enabled, the compressor may operation in a third mode of compression.