Abstract:
Dynamically adapting a continuous presence (CP) layout in a videoconference enhances a videoconferencing experience by providing optimum visibility to regions of interest within the CP layout and ignoring regions of no interest. Based on the CP layout, a CP video image can be built, in which a conferee at a receiving endpoint can observe, simultaneously, several other participants' sites in the conference. For example, more screen space within the CP layout is devoted to presenting the participants in the conference and little or no screen space is used to present an empty seat, an empty room, or an unused portion of a room. Aspect ratios of segments of the CP layout (e.g., landscape vs. portrait) can be adjusted to optimally present the regions of interest. The CP layout can be adjusted as regions of interest change depending on the dynamics of the video conference.
Abstract:
A novel technique allows synchronizing a plurality of audio and video streams received at a receiving media relay endpoint via an intermediate node, such as a media relay multipoint control unit. The received streams were generated by a plurality of transmitting media relay endpoints and been relayed to the plurality of receiving media relay endpoints via the intermediate node, but are seen as being using a single time domain, in terms of wall clock and manipulated timestamps, while preserving the correct capture time.
Abstract:
An endpoint optimizes bandwidth by initiating a peer-to-peer conference with a plurality of remote devices, generating a first quality list comprising a first device of the plurality of remote devices from which to receive a first data stream at a first quality level, transmit a request to the first device to receive the first data stream at the first quality level, determining that a second device of the plurality of remote devices is not a member of the first quality list, and in response to determining that the second device of the plurality of remote devices is not a member of the first quality list, transmitting a request to the second device to receive a second data stream at a second quality level.
Abstract:
Disclosed herein are methods, systems, and techniques for creating media conferencing layouts that are intelligent (i.e., based on some underlying principle to enhance user-perceived conference quality) and persistent (i.e., consistent within a call and from one call to the next).
Abstract:
Systems and methods for digitally linking multiple microphones and managing microphone signals are provided. Embodiments provide for digitally linking of multiple auto-mixer systems where a large number of microphones are required. In large auto-mixer systems, microphone input channels may be distributed among many devices. Rather than transmitting these signals individually to a central processing device for the auto-mixer, it is most efficient to distribute the audio signal processing functions of the automatic microphone mixer among multiple devices in an audio conferencing system. Subsequently, a smaller number of gated mixes of microphone signals may be transmitted between devices. Thus, embodiments of the present invention act to digitally link multiple microphone signals, arbitrating these signals, in order to enable distributed automatic microphone mixers to behave as a single mixer.
Abstract:
A system and method for integrating a personal computer based presentation with a videoconferencing system. A coupling device includes a card, insertable into a PCMCIA slot of a laptop computer or like machine, which includes a cable coupled to the card at a first end and to a connector coupled at a second end. The card includes firmware for loading into RAM of the computer and software operable to execute code.
Abstract:
A method of video conferencing among two or more video conference endpoints is provided, wherein the method comprises steps of: processing media data of the video conference into unified coding formats while switching media data of the video conference between the two or among more video conference endpoints; and saving the processed media data into recording files of continuous presence mode and lecture mode, wherein the recording file of continuous presence mode saves media data generated by the two or more video conference endpoints, the recording file of lecture mode saves media data generated by a video conference endpoint who is the lecturer in the video conference. Accordingly, a device of video conferencing is provided.
Abstract:
Disclosed herein are methods, systems, and devices for improved audio, video, and data conferencing. The present invention provides a conferencing system comprising a plurality of endpoints communicating data including audio data and control data according to a communication protocol. A local conference endpoint may control or be controlled by a remote conference endpoint. Data comprising control signals may be exchanged between the local endpoint and remote endpoint via various communication protocols. In other embodiments, the present invention provides for improved bridge architecture for controlling functions of conference endpoints including controlling functions of the bridge.
Abstract:
Disclosed herein are methods, systems, and devices for improved audio, video, and data conferencing. The present invention provides a conferencing system comprising a plurality of endpoints communicating data including audio data and control data according to a communication protocol. A local conference endpoint may control or be controlled by a remote conference endpoint. Data comprising control signals may be exchanged between the local endpoint and remote endpoint via various communication protocols. In other embodiments, the present invention provides for improved bridge architecture for controlling functions of conference endpoints including controlling functions of the bridge.
Abstract:
Quick Response barcodes (“QR Codes”) are used for videoconferencing between a peripheral device and a videoconferencing system, which can include a conferencing server and/or a videoconferencing unit. Conferencing related QR codes are embedded within video frames and are identified by either a peripheral device or a videoconferencing unit. Once identified, the device or unit acts according to the information provided by the QR code. The QR codes enables the peripheral device, videoconferencing unit, and conferencing server to operation in conjunction with one another even though one or more of the device may not share a compatible operation platform that would allow for direct communication of requests and responses.