Abstract:
Systems and methodologies are described that facilitate providing flow control feedback for controlling downlink data transmission rates. Various schemes can be utilized to send the flow control feedback from an access terminal to a base station. For example, a control PDU (e.g., MAC control PDU, PDCP control PDU) can be generated based upon a level of resource utilization of the access terminal, and sent to the base station for controlling the downlink data transmission rate. Following this example, a type of control PDU, a value included within the control PDU, etc. can be selected as a function of the level of resource utilization. By way of another illustration, a CQI report that includes a value selected as a function of the level of resource utilization associated with the access terminal can be generated and transmitted to the base station for controlling the downlink data transmission rate.
Abstract:
A transmission entity (e.g., user equipment (UE)) is expected to reduce the segmentation of Radio Link Control (RLC) Service Data Units (SDUs) while also minimizing padding. Signaling or provisioning of a constraint value such as a maximum padding amount or minimum segmentation size is employed in a determinative way in the UE to balance these objectives. A receiving entity (e.g., evolved base node (eNB)) benefits from being able to signal these parameters, whose application to RLC instances can discriminate between data and signaling radio bearers. Compliance can also be voluntary, such as the network entity employing at least a portion of the same approach on the downlink.
Abstract:
Aspects generally relate to wireless communications and, more particularly, to methods, systems and apparatus for timing synchronization during a wireless uplink random access procedure. For example, certain aspects relate to a technique for receiving first timing advance information associated with uplink wireless communications with a base station (BS), transmitting a random access connection request message to the BS, receiving a random access response from the BS while the first timing advance information is within a valid time period, the random access response comprising second timing advance information associated with uplink wireless communications with the base station, determining, after receiving the random access response, that the valid time period for the first timing advance information has expired, and utilizing the second timing advance information for uplink communications with the BS after determining that the valid time period for the first timing advance information has expired. Numerous other aspects are provided.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for reporting signal quality in overlapping Multimedia Broadcast Single Frequency Networks (MBSFN) areas. A UE may determine a signal quality estimate for each of two or more overlapping MBSFN areas based on Signal to Noise Ratio (SNR) information and Modulation and Coding Scheme (MCS) information for the MBSFN area. The UE may then determine a combined signal quality based on the signal quality estimates of the MBSFN areas.
Abstract:
A method for cell reselection by a wireless communication device is described. The method includes camping on a serving cell in idle mode. A neighbor cell is detected. A serving cell rank is computed for the serving cell. A neighbor cell rank is computed for the neighbor cell based on multimedia broadcast multicast service metrics. Cell reselection is determined based on the serving cell rank and the neighbor cell rank.