Abstract:
To measure USJ profile abruptness, a PMR-type optical metrology tool is to perform a series of two or more measurements, each with different pump/probe beam separations. Quadrature (Q) and in-phase (I) measurements are obtained for each measurement and used to derive a line in I-Q space. An abruptness measurement is derived by comparing the line slope to a similar line slope obtained for a sample having a known USJ profile. USJ profile depth is measured by obtaining quadrature (Q) values for one or more measurements. Each Q value is translated to a corresponding depth measurement using a table or similar lookup device.
Abstract:
A modulated reflectance measurement system includes three monochromatic diode-based lasers. Each laser can operate as a probe beam or as a pump beam source. The laser outputs are redirected using a series of mirrors and beam splitters to reach an objective lens. The objective lens focuses the laser outputs on a sample. Reflected energy returns through objective and is redirected by a beam splitter to a detector. A lock-in amplifier converts the output of the detector to produce quadrature (Q) and in-phase (I) signals for analysis. A Processor uses the Q and/or I signals to analyze the sample. By changing the number of lasers used as pump or probe beam sources, the measurement system can be optimized to measure a range of different samples types.
Abstract:
An apparatus is disclosed for obtaining ellipsometric measurements from a sample. A probe beam is focused onto the sample to create a spread of angles of incidence. The beam is passed through a quarter waveplate retarder and a polarizer. The reflected beam is measured by a detector. In one preferred embodiment, the detector includes eight radially arranged segments, each segment generating an output which represents an integration of multiple angle of incidence. A processor manipulates the output from the various segments to derive ellipsometric information.
Abstract:
A standardized sample for scatterometry includes four quadrants each including an inner block surrounded by four outer blocks. A pattern of gratings is repeated within each of the blocks using different resolutions and orientations. Each grating within an outer block has a matching grating within the block's pair. A grating and its matching grating are negative images of each other—the pitch and line-size of a grating are equal, respectively to the line size and pitch of the matching grating. The inner block also includes a series of background patterns positioned behind the gratings. These patterns include repeating patterns of hole and repeating line structures. This series of structures cover a large die area, helping to simulate the conditions faced by real-world scatterometers. The various structures feature a high-degree of alignment, allowing rapid verification using SEM or other techniques.
Abstract:
In the calibration and alignment of an X-ray reflectometry (“XRR”) system for measuring thin films, an approach is presented for accurately determining C0 for each sample placement and for finding the incident X-ray intensity corresponding to each pixel of a detector array and thus permitting an amplitude calibration of the reflectometer system. Another approach involves aligning an angle-resolved X-ray reflectometer using a focusing optic, such as a Johansson crystal. Another approach relates to validating the focusing optic. Another approach relates to the alignment of the focusing optic with the X-ray source. Another approach concerns the correction of measurements errors caused by the tilt or slope of the sample. Yet another approach concerns the calibration of the vertical position of the sample.
Abstract:
An ellipsometer includes a light source for generating a probe beam of polychromatic light for interacting with a sample. A polarizer is used to impart a known polarization state to the probe beam and the polarized probe beam is directed against the sample at a shallow angle of incidence. A rotating compensator is used to impart phase retardations to the polarization state of the reflected probe beam. After passing through the compensator, the probe beam passes through a second polarizer (analyzer). After leaving the analyzer, the probe beam is received by a detector. The detector translates the received probe beam into a signal that includes DC, 2ω and 4ω signal components (where ω is the angular velocity of the rotating compensator). A processor analyzes the signal using the DC, 2ω and 4ω components allowing simultaneous evaluation of both critical dimensions and film parameters.
Abstract:
A system for characterizing periodic structures on a real time basis is disclosed. A multi-parameter measurement module generates output signals as a function of wavelength or angle of incidence. The output signals are supplied to a parallel processor, which creates an initial theoretical model and calculates the theoretical optical response. The calculated optical response is compared to measured values. Based on the comparison, the model configuration is modified to be closer to the actual measured structure. Thereafter, the complexity of the model is iteratively increased, by dividing the model into layers each having an associated width and height. The model is fit to the data in an iterative manner until a best fit model is obtained which is similar in structure to the periodic structure.
Abstract:
A method for simultaneously monitoring ion implantation dose, damage and/or dopant depth profiles in ion-implanted semiconductors includes a calibration step where the photo-modulated reflectance of a known damage profile is identified in I-Q space. In a following measurement step, the photo-modulated reflectance of a subject is empirically measured to obtain in-phase and quadrature values. The in-phase and quadrature values are then compared, in I-Q space, to the known damage profile to characterize the damage profile of the subject.
Abstract:
A method for simultaneously monitoring ion implantation dose, damage and/or dopant depth profiles in ion-implanted semiconductors includes a calibration step where the photo-modulated reflectance of a known damage profile is identified in I-Q space. In a following measurement step, the photo-modulated reflectance of a subject is empirically measured to obtain in-phase and quadrature values. The in-phase and quadrature values are then compared, in I-Q space, to the known damage profile to characterize the damage profile of the subject.
Abstract:
A method for analyzing asymmetric structures (including isolated and periodic structures) includes a split detector for use in a broadband spectrometer. The split has detector has separate right and left halves. By independently measuring and comparing the right and left scattered rays, information about asymmetries can be determined.