Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may communicate with a base station by initiating a random access procedure with a multi-root preamble. The UE may receive, from the base station, a configuration message that indicates one or more parameters for the multi-root preamble. The one or more parameters may include cyclic shifts, phase rotations, and sequence roots corresponding to a plurality of sequences. The base station may identify the one or more parameters and transmit the configuration message based on the identifying. The UE may identify the one or more parameters for the multi-root preamble based on the configuration message and/or a pre-configuration at the UE. The UE may transmit, to the base station, the multi-root preamble based at least in part on the one or more parameters.
Abstract:
Methods, systems, and devices for wireless communications are described. In some systems, a user equipment (UE) may measure a frequency selectivity of a channel between the UE and a base station and may transmit signaling to the base station indicating one or both of a frequency selectivity metric or a recommended demodulation reference signal (DMRS) port multiplexing pattern based on measuring the frequency selectivity. In some aspects, the UE may transmit the signaling to assist the base station in configuring a DMRS port multiplexing pattern based on current channel conditions. For example, if the frequency selectivity metric satisfies a threshold, the UE may recommend a DMRS port multiplexing pattern absent of code division multiplexing (CDM). Alternatively, if the frequency selectivity metric fails to satisfy the threshold, the UE may recommend a DMRS port multiplexing patter including CDM.
Abstract:
Various designs for reference signals for beam management (BM) in non-terrestrial networks (NTNs) in 5G systems are discussed. NTN platforms determine to transmit a BM reference signal associated with a beam in an NTN. The BM reference signal is configured to facilitate beam switching at a wireless communication entity, and the beam having a beam bandwidth. The NTN platforms determines a frequency resource for transmitting the BM reference signal, and transmits, to a wireless communication entity, the BM reference signal in the determined frequency resource. The wireless communication entity monitors the frequency resource, receives the BM reference signal associated with the beam in the frequency resource, and manages beam selection based on the received BM reference signal. Other aspects and features are also claimed and described.
Abstract:
Methods, systems, and devices for wireless communications are described. A network may be configured to provide a beam measurement configuration to a UE that indicates durations for monitoring transmission beams, and tuning a component of the UE between the monitoring. The durations may include a first portion that a UE may use for a tuning operation and a second portion that the UE may use to monitor for or measure a respective reference signal. In various examples, the indicated durations may include a third portion that the UE may use for another tuning operation, or the durations may overlap with one another during an overlap duration that the UE may use for another tuning operation. During the indicated durations, the network may refrain from transmitting other downlink data or control information for the UE, and the UE may refrain from monitoring for such other downlink data or control information.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive system information associated with a set of neighboring cells included in a non-terrestrial network (NTN). The UE may be connected to or camped in a current cell included in the NTN. The current cell may be associated with a current platform. The UE may monitor a neighboring cell, of the set of neighboring cells, based at least in part on the system information. Numerous other aspects are provided.
Abstract:
A scheduling offset between an uplink and downlink radio frame timing structure of a user equipment (UE) may be updated to provide for more efficient utilization of hybrid automatic repeat request (HARQ) processes in a non-terrestrial network. For instance, different UEs may experience different round trip delays (RTDs) with a non-terrestrial cell. Different UEs may be configured with different scheduling offsets such that scheduling delays may be reduced and HARQ processes identifiers may be reused more rapidly. Additionally or alternatively, wireless communications systems may define one or more separation distances (or timing thresholds) for timing between communications and HARQ processes may be reused based on the separation distance threshold (e.g., such that a satellite may reuse a HARQ process ID for two scheduled communications that have not yet been performed by the UE).
Abstract:
Methods, systems, and devices for wireless communications that support upstream timing control mechanisms for non-terrestrial networks are described. Generally, the described techniques provide for wireless communications from a user equipment (UE) in wireless communication with a satellite. A gateway in the non-terrestrial networks may receive an upstream transmission from the UE in wireless communication with the satellite and determine a timing adjustment for a second upstream transmission from the UE based on the upstream transmission from the UE. The gateway may then transmit to the UE in a group control information message or a dedicated physical channel message, a timing command indicating the timing adjustment for the second upstream transmission. The UE may receive the second timing adjustment and transmit data over the second upstream transmission using the second timing adjustment.
Abstract:
Methods, systems, devices, and apparatuses for wireless communications are described that support techniques for initial access in wireless systems. Generally, the described techniques provide for communicating satellite information to simplify initial access procedures. A wireless communications system may signal relevant information (e.g., Doppler information or propagation delay information) associated with communications through a satellite to mobile terminals (e.g., user equipment (UEs)). The mobile terminals may utilize the relevant information to generate an uplink transmission (e.g., a random access message or an initial access message) that compensates for the Doppler shift and propagation delay that may be experienced by communications between the mobile terminals and the satellite.
Abstract:
A method and apparatus for link adaptation in a satellite communication system, wherein a satellite is configured to receive reverse-link (RL) communications from a user terminal (UT) via a service link and retransmit the RL communications to a satellite access network (SAN) via a feeder link. The SAN may select a reference location for the UT within a footprint of the satellite, and determine a set of operating parameters for the RL communications to achieve a target power efficiency of the satellite based on the reference location. The SAN may dynamically adjust one or more of the operating parameters, while maintaining the target power efficiency of the satellite, based at least in part on channel conditions in at least one of the service link, the feeder link, or a combination thereof. Among other advantages, the method disclosed herein may optimize RL communications based on the capabilities of the satellite.
Abstract:
Certain aspects of the present disclosure provide techniques for improving detection and processing of secondary synchronization signals (SSS).