Abstract:
A method of controlling a loudspeaker of an electronic device provides voice coil temperature protection. When a power supply for the electronic device is first activated, a binding step is performed in which the loudspeaker impedance is determined and a temperature (such as ambient temperature) is accurately measured. These binding step measurements are used during subsequent use of the loudspeaker, to make the temperature measurements (based on voice coil impedance) as accurate as possible.
Abstract:
A system and method are provided for creating a loudspeaker system with low failure rate of sound production. The system uses a loudspeaker with more than one voice coil, a circuit to detect breakage of a voice coil and a switching circuit to steer the system input signal to a remaining good voice coil.
Abstract:
The present invention relates to a flat-type speaker, and more specifically, to a flat-type speaker in which a plurality of magnetic circuits are horizontally connected in serial or in parallel such that one speaker is formed. According to the present invention, a flat-type speaker in which a plurality of magnetic circuits are horizontally connected is constituted by: a horizontal connection structure in which two or more pairs of independent magnetic bodies having different polarities are equipped; on said two or more magnetic bodies, enabling two or more voice coil plates, on which voice coils are printed, to be vertically arranged between the respective magnetic bodies in a horizontal direction; enabling the stream of currents of said two or more voice coil plates to maintain the same direction; allowing two or more thin film-shaped vibration-lead plates to be positioned on the upper end of said two or more voice coil plates such that the plates are electrically separated from each other; and allowing said voice coils and said two or more vibration-lead plates to be electrically connected with each other.
Abstract:
The present invention relates to a method and a circuit for testing a tweeter, said tweeter being part of a loudspeaker system, wherein the method includes the steps of: applying a high-frequency voltage signal to one terminal of said tweeter, said high-frequency voltage signal being generated by first electronic means; applying a constant voltage signal to the other terminal of said tweeter, said constant voltage signal being generated by second electronic means; measuring a current Iload that flows through said tweeter into said second electronic means; determining a connect/disconnect state of said tweeter from the value of said current.
Abstract:
A system and apparatus for constructing a displacement model across a frequency range for a loudspeaker is disclosed. The resultant displacement model is centered around the distortion point. Once a distortion model is constructed it can be incorporated into an audio driver to prevent distortion by incorporating the model and a distortion compensation unit with a conventional audio driver. Various topologies can be used to incorporate a distortion model and distortion compensation unit into an audio driver. Furthermore, a wide variety of distortion compensation techniques can be employed to avoid distortion in such an audio driver.
Abstract:
A method is provided for creating a series of digital signal processing (DSP) filters to improve the transient response of a loudspeaker, wherein the loudspeaker is formed of multiple components. The method includes generally six steps. The first step involves identifying a substantially linear, time-invariant, and spatially-consistent loudspeaker mechanism causing transient response distortion. The second step involves characterizing the identified mechanism. The third step involves determining the characterized mechanism's two-port response. The fourth step involves establishing a target response for the characterized mechanism. The fifth step involves calculating an ideal filter to achieve the target response. The sixth step involves designing a cost-reduced filter based on the ideal filter.
Abstract:
Control system for devices such as an audio reproduction system, an actuator device, an electromechanical device and a telephony device. The system includes control circuitry which receives an input signal and a signal indicative of a position of a portion of the controlled apparatus. The control circuit provides an output signal to the controlled apparatus to affect an operation of the controlled apparatus. The output signal provides control of the apparatus to compensate for one or more of: motor factor; spring factor; back electromotive force; and impedance of a coil in a driver of the controlled apparatus. The signal indicative of position is derived by one or more position indicator techniques such as an infrared LED and PIN diode combination, position dependent capacitance of one portion of the controlled apparatus with respect to another portion of the controlled apparatus, and impedance of a coil in the controlled apparatus. The control circuitry is configurable to control transconductance and/or transduction of the system being controlled. A technique is disclosed to detect and measure a cant of a voice coil transducer, the technique including measuring a capacitance between one portion of the voice coil transducer with respect to another portion of the voice coil transducer over a range of movement of the voice coil during operation.
Abstract:
The method makes possible the determination of loudspeaker parameters in real operation through a measurement of the moving-coil current im and it contains the following steps: 1) The measurement of the moving-coil current im resulting from the excitation of the loudspeaker using a known input signal ue; 2) The simulated estimation of the moving-coil current for the same input signal using an equivalent electrical network and a time-discrete model that is derived therefrom by wave digital realization; 3) The change of the parameters in the loudspeaker model through a preceding determination of starting values and the minimization of the average squared error from the measured and simulated moving-coil current, using a gradient method. The equivalent network contains a series circuit of two transformers, the first transformer on the secondary side having an inductor (Ls), and the second transformer on the secondary side having the parallel circuit of a resistor (1/r), a capacitor (M), and a third transformer.
Abstract:
In an automotive radio system an amplifier is capable of detecting speaker faults. A fault signal from the amplifier is received by a microprocessor which sends a fault message to a radio display and/or stores fault data which can be accessed via a serial data link by a diagnostic tool. One embodiment of the amplifier has an output pin for outputting distortion signal, and that pin is used when distortion is not likely to also output a fault signal which reveals the presence of a fault. Another embodiment of the amplifier has a data storage register which receives data on the type of fault and the affected channel, and a data bus to send the data to the microprocessor.
Abstract:
A circuit for improving the transient behavior of a two-way loudspeaker system includes a crossover circuit with high selectivity, amplitude and phase correction circuitry for separately correcting the amplitude and phase responses of the high and low frequency drivers in their mounting environment, and correction circuitry for correcting the composite amplitude and phase response of the overall loudspeaker system after insertion of the crossover. A further phase offset technique and circuit provides for introducing frequency dependent phase shift in the loudspeaker system's high or low frequency channels for offsetting the phase responses of the high and low frequency drivers within the crossover frequency range. According to the phase offset technique of the invention, phase shift is added, preferably in the high frequency channel, until composite amplitude response curves observed on-axis and at different vertical angles off-axis are forced to be consistent. After consistency is achieved the deterioration of the amplitude response resulting from the phase offset is corrected to a flat response by means of a forced series amplitude correction circuit inserted before the crossover. The result is improved transient response off-axis as well as on-axis.