Abstract:
Provided are a three-dimensional (3D) interaction apparatus capable of recognizing a user's motions in a 3D space for performing a 3D interaction function, a display device including the 3D interaction apparatus, and a method of driving the 3D interaction apparatus. The 3D interaction apparatus includes a depth camera which obtains a depth image including depth information of a distance between an object and the depth camera; an active optical device disposed in front of the depth camera and configured to adjust a propagation path of light by refracting incident light so as to adjust a field of view of the depth camera; and a driving unit which controls operation of the active optical device.
Abstract:
Provided are a complex spatial light modulator and a three-dimensional image display device including the same. The complex spatial light modulator includes: a spatial light modulator for modulating a phase of light; a prism array disposed next to the spatial light modulator; and a polarization-independent diffractive element for diffracting light that has passed through the prism array. The complex spatial light modulator may modulate both phase and amplitude of light.
Abstract:
A spatial light modulator includes a variable refractive index layer that has a refractive index which is variable based on one of an optical signal and an electrical signal, a metal layer that is disposed on the refractive index-change layer, and a high refractive index layer on the metal layer. Light incident on the metal layer causes generation of a surface plasmon at an interface between the variable refractive index layer and the metal layer.
Abstract:
A 3-dimensional (3D) holographic image displaying apparatus is provided. The apparatus includes a hologram reproducer configured to generate surface plasmons in response to incident light and reproduce a 3D image by diffracting the generated surface plasmons by a hologram, and a surface light source unit including a light source and a light guide plate, the light guide plate being configured to allow incident light from the light source to enter into the light guide plate, internally reflect the allowed light, and output the internally reflected light through a light-output surface, the surface light source unit being configured to implement colors by adjusting an angle of the light incident to the hologram reproducer so that the outputted light through the light-output surface is incident to the hologram reproducer at a surface plasmon-forming angle for each wavelength to generate the surface plasmons corresponding to a plurality of color beams.