Abstract:
Wireless communication systems and methods are described in which a network device may establish a connection with a user device within a wireless network. Through this connection location information regarding the user device is received. Based on the received location information, a second network device may be configured to beamform a high-frequency communication transmission session with the user device.
Abstract:
Methods, systems, and apparatuses are described for wireless communications. In one method, an uplink grant may be received over a licensed spectrum. A clear channel assessment (CCA) may be performed in response to the uplink grant to determine availability of an unlicensed spectrum. The CCA may be performed prior to a transmission associated with the uplink grant. In another method, scheduling information may be received over a licensed spectrum. An uplink grant may be transmitted over the licensed spectrum. The uplink grant may be based at least in part on the scheduling information. The uplink grant may be configured to trigger a CCA to determine availability of an unlicensed spectrum prior to a transmission associated with the uplink grant.
Abstract:
A wireless user equipment (UE) may receive a downlink transmission from a base station in a first subframe of a first subframe configuration, and determine that a neighboring base station is operating according to a second subframe configuration. The UE may modify interference operations for the downlink transmission in the first subframe based on the determination to account for the neighboring base station operating according to the different subframe configuration. Modifying interference operations may include, for example, skipping interference operations, applying different interference operations to a subframe or a portion of a subframe, or a combination thereof. Modifying interference operations may be based on one or more characteristics of the neighboring base station communications.
Abstract:
Techniques for improving uplink throughput of UE uplink transmissions are disclosed. The UE may communicate with an eNB over an LTE wireless link using a first radio, and with a WLAN access point over a WLAN wireless link using a second radio. The UE may schedule a first portion of uplink data from an aggregating layer of the UE for transmission over the WLAN wireless link during a scheduling window, the scheduling based on an availability of access to the LTE wireless link. The UE may transmit the first portion of the uplink data over the WLAN wireless link during the scheduling window. The aggregation of the LTE wireless link with the WLAN wireless link may allow the UE to transmit uplink data from the aggregating layer of the UE over both the LTE wireless link or the WLAN wireless link.
Abstract:
Methods, systems, and devices are described for supporting common reference signaling in wireless communications systems. Some configurations introduce a phase discontinuity between common reference signal (CRS) transmissions on different subframes. This may address issues that may arise when a reduced CRS periodicity is utilized. Indicators may also be transmitted from base stations to user equipment (UEs) to indicate whether phase continuity may be assumed or not. Some configurations may support CRS sequence initialization. These tools and techniques may utilize an extended CRS sequence periodicity, which may increase the number of CRS sequences transmitted by a cell.
Abstract:
Uplink control channel management is disclosed in which a user equipment receives a configuration for multiple uplink control channels for transmission to multiple nodes in multiflow communication with the UE. The UE generates the uplink control channels based on the configuration, wherein each of the uplink control channels is generated for a corresponding one of the nodes. The UE then transmits each of the uplink control channels to the corresponding node. For UEs capable of multiple uplink transmissions, in which the UE communicates with at least one of the nodes over multiple component carriers (CCs), the configuration may designate with of the multiple CCs the UE should transmit the uplink control channel for that node. For UEs capable of only single uplink transmissions, the configuration may designate the transmission of the uplink control channels in either frequency division multiplex (FDM) or time division multiplex (TDM) schemes.
Abstract:
Systems and techniques for communications include forming a data packet, selecting a plurality of transmission parameters for the data packet, generating information having one of a plurality of codes identifying the transmission parameters, and transmitting the data packet on a first channel and the information on a second channel. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or the meaning of the claims.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for positioning reference signals (PRS) in a new carrier type (NCT). A UE (user equipment) may identify a carrier type in which PRS will be transmitted and may determine a pattern for the PRS based on the identified carrier type. For example, different PRS patterns may be used for legacy and new carrier types. Similarly, a base station (BS) may determine a pattern for the PRS based on identifying a carrier type in which the PRS will be transmitted. Additionally, the BS may transmit signaling to the UE indicating the pattern for the PRS. The UE may determine the PRS pattern based, at least in part, on the received indication.
Abstract:
Certain aspects of the present disclosure provide methods and apparatus for performing coordinated multipoint (CoMP) channel state information (CSI) feedback under multiple channel and interference assumptions. One method generally includes receiving signaling indicating at least one or more interference measurement resources (IMRs) from a network and a configuration with one or more non-zero power reference signal (NZP-RS) resources in which one or more base stations transmit a RS, performing separate interference measurements at least on a per-IMR basis in one or more subframes by forming a baseline interference estimate based on the IMR and forming separate interference estimates based on adding interference from selected NZP-RS resources to the baseline interference estimate, and transmitting one or more CSI feedback reports that correspond to the interference measurements.
Abstract:
A method of wireless communication includes configuring a small cell with activation parameters. The activation parameters include a new carrier type having a reduced periodicity. The method also includes configuring a UE with time restricted measurements. The time restricted measurements correspond to the new carrier type and the reduced periodicity. The method further includes receiving small cell signal measurements from the UE and initiating an activation sequence in response to the small cell signal measurements.