Abstract:
A method of wireless communication with a multi subscriber identity module (SIM) multi standby UE includes tuning away from a data call on a first SIM to perform an activity for a second SIM. The method also includes tuning back to the data call on the first SIM and delaying, for a predetermined time period, a layer 2 message after tuning back. The layer 2 message can be a protocol data unit (PDU) status transmission in response to receiving a polling bit, a radio link control (RLC) protocol data unit (PDU) polling bit transmission, or a data re-transmission.
Abstract:
A user equipment (UE) applies an uplink timing adjustment during a high speed data call to allow uplink transmission of different UEs to arrive at a base station at a particular estimated time. In one instance, the UE determines whether a downlink (DL) timing varies more than a predetermined amount within a specified time period. The UE applies a timing advance command received in response to a scheduling request when the timing varies more than the predetermined amount. The UE also ignores a current uplink timing based on a closed loop timing advance command
Abstract:
A user equipment (UE) sends random access request and scheduling requests for channels, such as a physical random access channel (PRACH) and a random access uplink control channel (E-RUCCH), in parallel rather than serially to improve data transmission latency. In one instance, the UE transmits a first preamble for a random access procedure and a second preamble for a scheduling request in response to receiving a hard-handover command. The UE receives a first acknowledgment response to one of the preambles. The UE determines when to transmit the scheduling request based at least in part on which preamble is acknowledged.
Abstract:
In baton handover in TD-SCDMA communications, a user equipment (UE) may use of a single receiver to reduce call drops during baton handover. Following uplink handover, the UE may simultaneously receive downlink communication from a target cell and a source cell when a condition is satisfied. If the UE measures a signal quality of the downlink communication of the target cell greater than a signal quality of the downlink communication of the source cell, the UE switches to the target cell and completes the handover. If the UE measures a signal quality of the downlink communication of the source cell greater than a signal quality of the downlink communication of the target cell, the UE returns the uplink to the source cell and terminates the handover. Thus the UE may avoid handover to a target cell with poor signal quality.
Abstract:
A user equipment (UE) may adjust its uplink transmission power and timing for communications with a target cell while awaiting completion of a baton handover procedure. The amount of adjustments for the uplink transmission power/timing may be based on an amount of time remaining before baton handover failure is declared. The steps size of the adjustments may increase as the time remaining before handover failure becomes smaller.
Abstract:
When a user equipment is performing a packet-switched handover from a source radio access technology (RAT) to target RAT (such as Long Term Evolution) in connected mode, the UE may indicate a UTRA RAT capability based on an operator of the source RAT or an operator of the target RAT. If the operator is associated with a TD-SCDMA network, the UE may indicate a TD-SCDMA capability. If the operator is not associated with a TD-SCDMA network, the UE may indicate a W-CDMA capability.
Abstract:
A method of wireless communication includes modifying an initial transmit power for a subsequent uplink physical channel based on the difference between the desired received powers of the subsequent uplink physical channel and a random access physical channel. When the difference between the desired power of the subsequent uplink physical channel and the random access physical channel is above a predefined threshold, the modification is based on a first adjusted factor. When the subsequent uplink physical channel and random access physical channel are on different frequencies (or time slots) the modification is based on a second adjusted factor.
Abstract:
A method of wireless communication includes receiving a list of neighbor cells and determining whether each of the neighbor cells in the list of neighbor cells has a path loss below a threshold value. The method also includes calculating a serving neighbor path loss (SNPL) based on a serving cell and only the neighbor cells having path loss below the threshold value.
Abstract:
This disclosure provides systems, methods, and apparatuses for sharing a maximum transmit power limit between a first radio access technology (RAT) and a second RAT. In one aspect, a wireless communication apparatus may reduce the maximum transmit power limit of a first uplink signal associated with the first RAT to obtain a first transmit power. The wireless communication apparatus may allocate a second transmit power remaining from the maximum transmit power limit to a second uplink signal associated with the second RAT. The wireless communication apparatus may reduce the maximum transmit power limit when the wireless communication apparatus is located at a cell edge, and a higher priority of the first RAT in relation to the second RAT may otherwise result in the second transmit power of the second uplink signal not satisfying a threshold.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive, via a user interface of the UE, an indication of a mobility mode associated with the UE, wherein the mobility mode indicates an environment associated with the UE. The UE may perform an action based at least in part on the mobility mode associated with the UE. Numerous other aspects are described.