Abstract:
In one embodiment, a packet to be transmitted along a communication path in a network from a source to a destination is determined, the communication path having one or more hops between the source and the destination. An instruction is sent to one or more tracking nodes along the communication path to track a number of local retransmissions required to successfully transmit the packet from each tracking node to a respective next-hop destination. Then, reports indicating the number of local retransmissions are received from the one or more tracking nodes.
Abstract:
In one embodiment, an aggregating node receives feedback messages from one or more destination nodes in the network. The destination nodes are designated to receive data as packets from a source node using rateless coding. Further, the feedback messages indicate whether packets are needed at a corresponding destination node to complete the data. Then, the feedback messages are aggregated into a single aggregated message, and the aggregated message is transmitted toward the source node.
Abstract:
In one embodiment, a multicast communication is received at a particular node of a plurality of nodes receiving the multicast communication in a network. The particular node selects a subset of subcarriers using a probabilistic data structure, such that each of the plurality of nodes selects a respective subset of subcarriers using the probabilistic data structure. The particular node transmits an acknowledgement of receipt of the multicast communication on the subset of subcarriers selected by the particular node. The transmission occurs simultaneously with transmissions of acknowledgements from the other of the plurality of nodes.
Abstract:
In one embodiment, a device in a network detects a power outage event in the network. The device causes an unprotected node in the network to use a first routing topology that includes a power-protected backbone, in response to detecting the power outage event. The power-protected backbone includes one or more nodes that are protected against the power outage event and the unprotected node is not protected against the power outage event. The device routes data for the unprotected node using the first routing topology. The device causes the unprotected node to use a second routing topology that optimizes a path from the unprotected node to a root node of the network based on one or more performance criteria.
Abstract:
In one embodiment, a device determines a set of sources and used destinations for traffic in a computer network, where nodes of the network are configured to send all traffic to the used destinations through a root node of the computer network according to a directed acyclic graph (DAG). The device may then also determine a set of capable nodes as common ancestors to source-destination pairs that provide a more optimal path between the source-destination pairs than traversing the root node, and instructs the set of capable nodes to store downward routes to forward traffic for one or more of the used destinations according to the stored downward route rather than through the root node.
Abstract:
In one embodiment, a device determines a need to resynchronize a broadcast and unicast frequency-hopping schedules on its network interface. In response to the need, the device may solicit the broadcast schedule from one or more neighbor devices having the synchronized broadcast schedule, and then establishes the unicast schedule for the network interface using communication during the synchronized broadcast schedule.
Abstract:
In one embodiment, a channel on which a receiving node will receive a data packet that is transmitted at a particular time in a channel-hopping network is determined according to a channel-hopping receive schedule of the receiving node. Channel characteristics of the determined channel are computed. Then, a code rate of the data packet is selected based on the computed channel characteristics of the determined channel. After the code rate selection, the data packet is transmitted on the determined channel to the receiving node using the selected code rate.
Abstract:
In one embodiment, a device in a network identifies one or more traffic classes used by one or more nodes in the network. The device determines routing requirements for a particular traffic class of the one or more traffic classes. The device generates a channel assignment that assigns the particular traffic class to a particular channel based on the routing requirements for the particular traffic class. The device provides the channel assignment to the one or more nodes. The one or more nodes use the channel assignment to route traffic of the particular traffic class within the network.
Abstract:
In one embodiment, a capable node in a computer network may host a path computation element, receive one or more neighborhood discovery messages including neighborhood information from a plurality of nodes in the computer network, and compute a minimum spanning tree (MinTree) for the computer network based on the neighborhood information. The MinTree may divide the plurality of nodes in the computer network into a first subset of routing nodes and a second subset of host nodes. The first subset of routing nodes may form one or more interconnected paths of routing nodes within the MinTree, and each host node within the second subset of host nodes may be located within one hop of at least one routing node. The capable node may then communicate a MinTree message to the plurality of nodes in the computer network to build the MinTree by enabling routing on each routing node.
Abstract:
In one embodiment, a method is disclosed in which physical layer information is received from one or more nodes along a path in a network. Self-interference information is also received from the one or more network nodes. The presence of self-interference along the path is identified and a transmission strategy of the one or more nodes is altered based on the identified self-interference and the received physical layer information.