Abstract:
A system for directionally selective sound reception comprises an array of pressure sensors (120a, 120c) each arranged to output a pressure signal indicative of pressure, and a processor arranged to receive the pressure signals. The sensor array comprises a support (130) supporting the four sensors. Two of the sensors are mounted on one side of the support and at least a third sensor is supported on an opposite side of the support. The sound pressure difference measured between the first sensor and the second sensor caused by sound arriving at the array from a direction parallel to the support (130) is dependent on the distance between the first and second sensors and the nature of material in the space between the first and second sensors. The sound pressure difference measured between the first and third sensors caused by sound travelling perpendicular to the support is dependent on the distance between the first and third sensors. The nature of material in the space between the first and third sensors, and the spacings and the materials are selected such that the sound pressure differences are substantially equal.
Abstract:
A microphone support device includes a ring-shaped flame, a plurality of fixed arms which protrude toward an inner side of the flame, a plurality of movable arms which are longer than the fixed arms and are detachable, and multiple microphones. A small-size microphone array is constructed by accommodating the plurality of movable arms inside of the flame in a radiating state. On the other hand, a large-size microphone array is constructed by radially developing the plurality of movable arms outside of the flame. When constructing a circular two-dimensional microphone array, a size of the circular two-dimensional microphone array can be easily changed in this manner. Hence, the sound localization can be handled over a wide frequency range.
Abstract:
An information processing system including a recognizing unit configured to recognize a given target on the basis of signals detected by a plurality of sensors arranged around a specific user, an identifying unit configured to identify the given target recognized by the recognizing unit, an estimating unit configured to estimate a position of the specific user in accordance with the a signal detected by any one of the plurality of sensors, and a signal processing unit configured to process signals acquired from sensors around the given target identified by the identifying unit in a manner that, when output from a plurality of actuators arranged around the specific user, the signals are localized near the position of the specific user estimated by the estimating unit.
Abstract:
An apparatus comprising: at least one determiner configured to determine at least one characteristic associated with a flexible part of a further apparatus; a signal processor configured to process at least one signal dependent on the at least one characteristic associated with the flexible part of the further apparatus, wherein the signal is at least one of an audio and a video signal; and an user interface generator configured to generate at least one user interface indication dependent on the characteristic associated with a flexible part of the further apparatus.
Abstract:
A system for directionally selective sound reception comprises an array of pressure sensors each arranged to output a pressure signal indicative of pressure, and processing means arranged to receive the pressure signals, identify a plurality of frequency components of the signals, identify at least one source direction, and identify at least one of the components as coming from the source direction. The sensor array comprises support means having two opposite sides and four sensors, at least one of the sensors being supported on each of the sides of the support means.
Abstract:
Methods and system are described for cancelling interference in a microphone system. A positive bias voltage is applied to a first microphone diaphragm and a negative bias voltage is applied to a second microphone diaphragm. The diaphragms are configured to exhibit substantially the same mechanical deflection in response to acoustic pressures received by the microphone system. A differential output signal is produced by combining a positively-biased output signal from the first microphone diaphragm and a negatively-biased output signal from the second microphone diaphragm. This combining cancels common-mode interferences that are exhibited in both the positively-biased output signal and the negatively-biased output signal.
Abstract:
The OPTIMUM BROADCAST AUDIO CAPTURING APPARATUS, METHOD AND SYSTEM (“OBAC”) transforms selection request, video feeds, and, audio feeds inputs via OBAC components into synchronized and optimum video and audio outputs. In one embodiment, a processor-implemented method for capturing optimal audio in sports broadcasting is disclosed, comprising: receiving real time data from a first instrumented camera situated in a venue; processing the real time data to determine a first field position in the venue; activating a first microphone from a plurality of microphones in a first microphone array based on the first field position; and sending a first audio selection from the first microphone.
Abstract:
A speech from a speaker proximate to one or more microphones within an environment can be received. The microphones can be a directional microphone or an omni-directional microphone. The speech can be processed to produce an utterance to determine the identity of the speaker. The identity of the speaker can be associated with a voiceprint. The identity can be associated with a user's credentials of a computing system. The credentials can uniquely identify the user within the computing system. The utterance can be analyzed to establish a zone in which the speaker is present. The zone can be a bounded region within the environment. The zone can be mapped within the environment to determine a location of the speaker. The location can be a relative or an absolute location.
Abstract:
Systems, methods, apparatus, and machine-readable media for orientation-sensitive selection and/or preservation of a recording direction using a multi-microphone setup are described.
Abstract:
A sensor system being is located in an environment composed of a first medium, where waves propagate with a first phase velocity, the sensor system including at least one main enclosure and a sensor array with at least two sensors, said sensor array being arranged inside the main enclosure, wherein the space inside the main enclosure between the sensor array and the inner surface of the main enclosure is filled with a second medium, in which waves propagate with a second phase velocity, the second phase velocity being different from the first velocity.