Abstract:
Use of a non-solvent for the edge bead removal of spin-coated PZT or PLZT thinfilms, eliminates swelling of the exposed edges of the PZT or PLZT thinfilms and eliminates delamination and formation of particle defects in subsequent bake and anneal steps.
Abstract:
Disclosed herein are electroplating systems for forming a layer of metal on a wafer which include an electroplating module and a wafer edge imaging system. The electroplating module may include a cell for containing an anode and an electroplating solution during electroplating, and a wafer holder for holding the wafer in the electroplating solution and rotating the wafer during electroplating. The wafer edge imaging system may include a wafer holder for holding and rotating the wafer through different azimuthal orientations, a camera oriented for obtaining multiple azimuthally separated images of a process edge of the wafer while it is held and rotated (the process edge corresponding to the outer edge of the layer of metal formed on the wafer), and image analysis logic for determining an edge exclusion distance, wherein the edge exclusion distance is a distance between the wafer's edge and the process edge.
Abstract:
Provided is a rinse solution for a hydrogenated polysiloxazane thin film including an additive selected from an alcohol-based solvent, an ester-based solvent, a silanol-based solvent, an alkoxysilane-based solvent, an alkylsilazane-based solvent, and a combination thereof in an amount of 0.01 wt % to 7 wt % based on the total amount of the rinse solution.
Abstract:
Chemical etching methods and associated modules for performing the removal of metal from the edge bevel region of a semiconductor wafer are described. The methods and systems provide the thin layer of pre-rinsing liquid before applying etchant at the edge bevel region of the wafer. The etchant is less diluted and diffuses faster through a thinned layer of rinsing liquid. An edge bevel removal embodiment involving that is particularly effective at reducing process time, narrowing the metal taper and allowing for subsequent chemical mechanical polishing, is disclosed.
Abstract:
A method and apparatus for processing substrate edges is disclosed that overcomes the limitations of conventional edge processing methods and systems used in semiconductor manufacturing. The edge processing method and apparatus of this invention includes a laser and optical system to direct a beam of radiation onto a rotating substrate supported by a chuck, in atmosphere. The optical system accurately and precisely directs the beam to remove or transform organic or inorganic films, film stacks, residues, or particles from the top edge, top bevel, apex, bottom bevel, and bottom edge of the substrate. An optional gas injector system directs gas onto the substrate edge to aid in the reaction. Process by-products are removed via an exhaust tube enveloping the reaction site. This invention permits precise control of an edge exclusion zone, resulting in an increase in the number of usable die on a wafer. Wafer edge processing with this invention replaces existing solvent and/or abrasive methods and thus will improve die yield.
Abstract:
A method of bevel edge etching a semiconductor substrate having exposed copper surfaces with a fluorine-containing plasma in a bevel etcher in which the semiconductor substrate is supported on a semiconductor substrate support comprises bevel edge etching the semiconductor substrate with the fluorine-containing plasma in the bevel etcher; evacuating the bevel etcher after the bevel edge etching is completed; flowing defluorinating gas into the bevel etcher; energizing the defluorinating gas into a defluorination plasma at a periphery of the semiconductor substrate; and processing the semiconductor substrate with the defluorination plasma under conditions to prevent discoloration of the exposed copper surfaces of the semiconductor substrate upon exposure, the discoloration occurring upon prolonged exposure to air.
Abstract:
An apparatus for etching a bevel edge of a substrate includes a bevel etch chamber and a controller including non-transitory computer readable media. The computer readable media includes computer readable code for providing a cleaning gas comprising at least one of a CO2 or CO, computer readable code for forming a cleaning plasma from the cleaning gas, and computer readable code for cleaning the bevel edge with the cleaning plasma, including computer readable code for placing the gas distribution plate at a close distance from a top surface of the substrate such that the cleaning plasma is not formed between the gas distribution plate and the substrate during the bevel edge cleaning, the bevel edge exposed to the cleaning plasma including at least an edge portion of a top surface at an edge of the substrate.
Abstract:
A plasma processing chamber configured for cleaning a bevel edge of a substrate is provided. The chamber includes a top edge electrode surrounding an insulating plate, and the insulator plate opposes a bottom electrode. The top edge electrode is electrically grounded and separated from the insulator plate by a top dielectric ring. The chamber also includes a bottom edge electrode that is electrically grounded and surrounds the bottom electrode and is separated from the bottom electrode by a bottom dielectric ring. The bottom edge electrode is oriented to oppose the top edge electrode, and the bottom edge electrode has an L shape that is up-facing. Bevel edge plasma processing of a substrate edge is configured to be processed in a chamber having the top and bottom edge electrodes.
Abstract:
A substrate processing apparatus includes a substrate holding unit configured to hold a substrate; a first processing liquid nozzle configured to supply a first processing liquid to a peripheral portion of the substrate; a second processing liquid nozzle configured to supply a second processing liquid, the temperature of which is lower than that of the first processing liquid, to the peripheral portion of the substrate; a first gas supply port configured to supply a first gas at a first temperature to a first gas supplied place on the peripheral portion of the substrate; and a second gas supply port configured to supply a second gas at a second temperature lower than the first temperature to a place closer to the center in the radial direction as compared to the first gas supplied place with respect to the substrate.
Abstract:
A plasma etch processing chamber configured to clean a bevel edge of a substrate is provided. The chamber includes a bottom edge electrode and a top edge electrode defined over the bottom edge electrode. The top edge electrode and the bottom edge electrode are configured to generate a cleaning plasma to clean the bevel edge of the substrate. The chamber includes a gas feed defined through a top surface of the processing chamber. The gas feed introduces a processing gas for striking the cleaning plasma at a location in the processing chamber that is between an axis of the substrate and the top edge electrode. A pump out port is defined through the top surface of the chamber and the pump out port located along a center axis of the substrate. A method for cleaning a bevel edge of a substrate is also provided.