Abstract:
A redox bipolar cell fabric washing system and method is disclosed that provides for washing fabrics without the use of any added detergents, fabric softeners, or bleaches, or other chemical al additives. The system includes a conventional fabric washing machine with a redox bipolar cell that through a circulation pump continuously treats the wash water by using mixed oxidants or charged wash water to remove contaminants from the fabric. The redox cell includes a housing, a plurality of cathode plates, a plurality of membranes, and a plurality of anodes proximately positioned in an alternate manner with a plurality of flow channels in the housing. The cell produces charged wash water by an electrochemical reaction utilizing electrically charged anodes and cathodes with semi permeable membranes, wherein the oxidation reduction potential of the charged wash water is continuously controlled with a sensor to determine when the fabrics are clean.
Abstract:
An electric washing machine according to the present invention performs a washing process for washing laundry without the use of a detergent by generating water streams in an outer tub (2) containing an electrolyzed liquid produced through electrolysis by an electrolyzing device (31) when a zero detergent course is selected by a user. The electrolyzing device (31) is provided as a water treatment unit (60) attached to a lower portion of an outer side surface (66) of the outer tub (2), and includes a thin-box-shaped electrolyzing chamber (32), a pair of electrodes (33) supported at opposite edges thereof, and a pair of water communication paths (34, 35). The pair of water communication paths (34, 35) are disposed in a vertically juxtaposed relation to connect the outer tub (2) to the electrolyzing chamber (32) with the intervention of packings (81). Thus, an assembling operation and the like can conveniently be performed, and water can efficiently be electrolyzed for use in the washing process.
Abstract:
Washing items are washed simultaneously with softening washing water comprising alkali metal ion and at least one of carbonate ion and bicarbonate ion. The washing water before being softened is obtained by electrolyzing an aqueous solution of sodium hydrogencarbonate having a pH of 9.5 or more and an electric conductivity of 150 mS/m or more. The softened washing water has a total hardness of 40 ppm or less.
Abstract:
A piece of soiled fabric is cleaned by contacting it with a jet of an ionized soil-dislodging gas to dislodge the soil therefrom. The ionized gas and the use of an oppositely charged electrostatic filter aid in preventing redeposition of the soil onto the fabric. The fabric may be agitated while it is contacted with the gas jet. A portion of the piece of fabric may be treated with an electrostatic spotting compound that enhances the effect of the ionized gas and may also enhance the removal of the soil. An apparatus for accomplishing the cleaning includes a container having an interior in which the fabric is received, a gas jet nozzle directed into the interior of the container, a source of a pressurized gas communicating with an inlet of the gas jet nozzle, a gas jet manifold extending from the source to the gas jet nozzle, and a gas ionizer disposed to ionize the pressurized gas passing through the gas jet nozzle.
Abstract:
An electrolytic cell for the electrolysis of a sodium chloride solution includes a cathode compartment having therein a cathode for producing hydrogen during electrolysis and an anode compartment having therein an anode for producing chlorine gas during electrolysis. A single conduit is at the bottom of the cell for charging sodium chloride solution into the compartments and for discharging therefrom solutions resulting from electrolysis. A porous partition substantially separates the compartments and has a lower end terminating above the bottom of the cell at the single conduit, such that the lower ends of the compartments are in free communication. A mixing chamber is connected to the upper ends of the two compartments to mix the hydrogen and chlorine gas and to dynamically balance the pressures in the two compartments, thereby preventing mixing of the products of electrolysis from the two compartments.
Abstract:
An electrolytic assembly and a laundry treatment apparatus. An electrolytic assembly includes an electrolytic device, a heating member, and a mounting device. The electrolytic device includes an electrode. The electrolytic device and/or heating member is connected to the mounting device. The heating member and the electrode are located on the same side of the mounting device. The electrolytic assembly can produce a hydroxyl radical having a strong oxidization activity by electrolyzing water by means of the electrolytic device to perform disinfection and sterilization, and can further heat a liquid to a required temperature by means of the heating member. The integration of the heating member and the electrolytic device can facilitate the arrangement of the structures of the heating member and the electrolytic device more compact and facilitate overall assembly/disassembly.
Abstract:
The subject disclosure relates to a clothing washing system, an apparatus for generating nano microbubble ionic water, and a method of washing clothes. The clothing washing system includes an adjustment unit, an electrolysis unit, a first fluid circulation unit, a nano microbubble generation unit, a second fluid circulation unit, and a cleaning unit. The electrolysis unit is in fluid communication with the adjustment unit. The first fluid circulation unit is connected to the adjustment unit and the electrolysis unit. The nano microbubble generation unit is in fluid communication with the adjustment unit. The second fluid circulation unit is connected to the adjustment unit and the nano microbubble generation unit. The cleaning unit is in fluid communication with the adjustment unit.
Abstract:
A washing machine of the present invention includes an electrolyzed water generating unit and a wash tub. The electrolyzed water generating unit includes an electrolytic solution supplying unit and an electrolysis unit including an electrolysis electrode pair. The electrolytic solution supplying unit is provided so as to supply an aqueous solution of an electrolyte for generating electrolyzed water to the electrolysis unit. The electrolyte for generating electrolyzed water contains an alkali metal chloride and a substance that makes an aqueous solution acidic. The electrolysis unit is provided so that the aqueous solution of the electrolyte for generating electrolyzed water is electrolyzed using the electrolysis electrode pair to generate an electrolyzed water. The electrolyzed water generating unit is provided so as to supply the electrolyzed water generated by the electrolysis unit to the wash tub. The electrolyzed water supplied to the wash tub by the electrolyzed water generating unit has a pH of more than 6.5 and less than 8.0.
Abstract:
The present invention relates to a washing machine comprising a washing chamber for receiving a wash liquor and textile substrates to be cleaned, and a decoloration device (3) which has an inlet (4) for introducing wash liquor from the washing chamber into the decoloration device (3) as well as an outlet (5) for discharging wash liquor from the decoloration device (3) into the washing chamber, and which, moreover, has at least one electrochemical activator that is suitable for initiating, within the decoloration device (3), a process for forming free radicals in the wash liquor. According to the present invention, the washing machine includes a reservoir containing water-insoluble solid particles. Furthermore, a method for washing textile substrates in such a washing machine is also disclosed.
Abstract:
An antimicrobial supply system employs a process water supply and incorporates a metallic ion supply connected to the process water supply to provide a high ion concentrate to an output. A dilution reservoir is connected to the metallic ion supply output and has an input from the process water supply. A pump is connected to an output of the reservoir. A manifold connected to the pump provides a dilute concentrate to at least one washing system and a recirculation loop to the dilution reservoir for enhanced mixing of the dilute concentrate. An electronics control module is connected to a first flow controller between the process water supply and the metallic ion supply and a second flow controller between the metallic ion supply and the reservoir for dilution control establishing a desired metallic ion concentration.