Abstract:
Intermediate to high CTE glass compositions and laminates formed from the same are described. The glasses described herein have properties, such as liquidus viscosity or liquidus temperature, which make them particularly well suited for use in fusion forming processes, such as the fusion down draw process and/or the fusion lamination process. Further, the glass composition may be used in a laminated glass article, such as a laminated glass article formed by a fusion laminate process, to provide strengthened laminates via clad compression as a result of CTE mismatch between the core glass and clad glass.
Abstract:
Disclosed herein are laminated glass articles having a hard scratch resistant outer surface. In some embodiments, the laminated glass article includes a glass core layer and a glass clad layer. In some embodiments, the laminated glass article includes a glass core layer sandwiched between two glass clad layers. In some embodiments, the clad glass is selected from the group of consisting of: aluminate glasses; oxynitride glasses; rare earth/transition metal glasses; beryl glasses; and glasses containing lithium, zirconium, or both lithium and zirconium. Such glass compositions can thus be used in forming the clad layer.
Abstract:
Described herein are alkali-free, boroalumino silicate glasses exhibiting desirable physical and chemical properties for use as substrates in flat panel display devices, such as, active matrix liquid crystal displays (AMLCDs) and active matrix organic light emitting diode displays (AMOLEDs). In accordance with certain of its aspects, the glasses possess good dimensional stability as a function of temperature.
Abstract:
Borosilicate glasses are disclosed having (in weight %) 66-76% SiO2, 0-8% Al2O3, 10-18% B2O3, 0-4% Li2O, 0-12% Na2O, 0-12% K2O, 1-1.5% Ag, 1.5-2.5% Cl− and 0.01-0.06% of a summed amount of CuO and NiO, wherein the glass composition is bleachable upon exposure to ultraviolet irradiation from a stable state color or shade to a lighter color or shade. Such reverse photochromic borosilicate glass compositions may be thermally darkenable. The borosilicate glasses may be strengthened via ion-exchange strengthening treatment. The borosilicate glasses may retain their reverse photochromic and thermally darkenable properties even after ion-exchange strengthening treatment.
Abstract translation:公开了硼硅酸盐玻璃,其具有(重量%)66-76%SiO 2,0-8%Al 2 O 3,10-18%B 2 O 3,0-4%Li 2 O,0-12%Na 2 O,0-12%K 2 O,1-1.5% Ag,1.5-2.5%Cl-和0.01-0.06%的总计量的CuO和NiO,其中玻璃组合物在从稳定状态的颜色或阴影暴露于较浅的颜色或阴影的紫外线照射下是可漂白的。 这种反相光致变色硼硅玻璃组合物可以是热可黑化的。 可以通过离子交换强化处理来加强硼硅酸盐玻璃。 即使在离子交换强化处理之后,硼硅酸盐玻璃也可以保持其反相光致变色和热可黑化性能。
Abstract:
Glass-ceramics and precursor glasses that are crystallizable to glass-ceramics are disclosed. The glass-ceramics of one or more embodiments include rutile, anatase, armalcolite or a combination thereof as the predominant crystalline phase. Such glasses and glass-ceramics may include compositions of, in mole %: SiO2 in the range from about 45 to about 75; Al2O3 in the range from about 4 to about 25; P2O5 in the range from about 0 to about 10; MgO in the range from about 0 to about 8; R2O in the range from about 0 to about 33; ZnO in the range from about 0 to about 8; ZrO2 in the range from about 0 to about 4; B2O3 in the range from about 0 to about 12, and one or more nucleating agents in the range from about 0.5 to about 12. In some glass-ceramic articles, the total crystalline phase includes up to 20% by weight of the glass-ceramic article.
Abstract translation:公开了可玻璃陶瓷结晶的玻璃陶瓷和前体玻璃。 一个或多个实施方案的玻璃陶瓷包括作为主要结晶相的金红石,锐钛矿,二钙铝石或其组合。 这种玻璃和玻璃陶瓷可以包括摩尔%的组分:SiO 2在约45至约75的范围内; 在约4至约25的范围内的Al 2 O 3; 在约0至约10的范围内的P 2 O 5; 在约0至约8的范围内的MgO; R 2 O在约0至约33的范围内; 在约0至约8的范围内的ZnO; 在约0至约4的范围内的ZrO 2; B 2 O 3在约0至约12的范围内,以及一种或多种成核剂在约0.5至约12的范围内。在一些玻璃陶瓷制品中,总结晶相包含至多20重量%的玻璃 - 陶瓷 文章。
Abstract:
Intermediate to high CTE glass compositions and laminates formed from the same are described. The glasses described herein have properties, such as liquidus viscosity or liquidus temperature, which make them particularly well suited for use in fusion forming processes, such as the fusion down draw process and/or the fusion lamination process. Further, the glass composition may be used in a laminated glass article, such as a laminated glass article formed by a fusion laminate process, to provide strengthened laminates via clad compression as a result of CTE mismatch between the core glass and clad glass.
Abstract:
An ion exchangeable glass having a high degree of resistance to damage caused by abrasion, scratching, indentation, and the like. The glass comprises alumina, B2O3, and alkali metal oxides, and contains boron cations having three-fold coordination. The glass, when ion exchanged, has a Vickers crack initiation threshold of at least 10 kilogram force (kgf).
Abstract translation:具有高耐磨性,划痕,压痕等的耐损伤性的离子交换玻璃。 该玻璃包括氧化铝,B 2 O 3和碱金属氧化物,并且含有三重配位的硼阳离子。 当离子交换时,该玻璃的维氏裂纹起始阈值为至少10千克力(kgf)。
Abstract:
Opal glass compositions and glass articles comprising the same are disclosed. In one embodiment, a glass composition includes 55 mol. % to 70 mol. % SiO2 and 9 mol. % to 15 mol. % Al2O3 as glass network formers. The glass composition also includes 10 mol. % to 15 mol. % alkali oxide M2O, wherein M is at least one of Na and K. The glass composition also includes 2 mol. % to 8 mol. % divalent oxide RO, wherein R is at least one of Zn, Ca, and Mg. As an opalizing agent, the glass composition may also include 8.5 mol. % to 16 mol. % F−. The glass composition may also include 0 mol. % to 0.3 mol. % SnO2 as a fining agent and from about 0 mol. % to about 6 mol. % of colorant. The glass composition is free from As and compounds containing As.
Abstract:
Described herein are various glass compositions, glass articles, and information storage devices that comprise the glass articles as substrates therefor, along with methods for their manufacture and use.
Abstract:
Laminated glass articles and methods for making the same are disclosed. In one embodiment, a laminated glass article may include a glass core layer and at least one glass cladding layer fused to the glass core layer. The at least one glass cladding layer may be phase separated into a first phase and at least one second phase having different compositions. The first phase of the at least one glass cladding layer may have an interconnected matrix. The at least one second phase of the at least one glass cladding layer may be dispersed throughout the interconnected matrix of the first phase of the at least one glass cladding layer. In some embodiments, the at least one second phase may be selectively removed from the interconnected matrix leaving a porous, interconnected matrix of the first phase.