摘要:
A pressure-limiting valve includes a housing and a pressure adjustment device provided therein. The pressure-limiting valve further includes a valve seat arranged in the housing and configured to be closed by a spring-loaded closing element of the pressure adjustment device. The housing is composed of cast iron having spherical graphite. The housing is surface-hardened at least in a region of the valve seat.
摘要:
The present invention relates to an alloy cast iron, and a piston ring containing the same, the alloy cast iron including: a pearlite matrix; and a graphite structure and a steadite-type eutectic structure which are precipitated in the pearlite matrix, wherein the steadite-type eutectic structure includes at least one element selected from boron (B) and vanadium (V), at least one element selected from chromium (Cr) and molybdenum (Mo), and copper (Cu).
摘要:
The invention discloses a high strength nodular cast iron pole and a preparation technology thereof. The preparation technology is characterized by comprising the following steps: (1) preparation before pole casting, to be specific, preparation of raw materials, smelting of iron, adding of alloying elements and nodulizing; (2) a pole casting procedure, to be specific, casting and inoculation treatment; and (3) heat treatment. The invention also provides the high strength nodular cast iron pole prepared by adopting the preparation technology, comprising multiple tower poles which are sequentially connected in an inserted manner, wherein each tower pole is a cone-frustum hollow column which has the conicity of 1000:11-26; the top end of the high strength nodular cast iron pole is equipped with a tower cap. The high strength nodular cast iron pole has the advantages of high bearing capacity, thin wall thickness, light weight, low manufacturing cost and the like.
摘要:
A piston ring formed of cast iron provides improved machinability and exceptional performance and minimum costs. The cast iron includes 2.2 to 2.9 wt. % carbon, 3.2 to 4.2 wt. % silicon, 0.75 to 1.25 wt. % copper, 1.0 to 1.5 wt. % manganese, 0.09 to 0.15 wt. % sulfur, not greater than 0.2 wt. % phosphorous, and an average carbon equivalent of 3.8. The cast iron preferably includes a matrix of martensite with MnS and carbides dispersed therein. The matrix is also preferably free of ferrite, austenite, and steadite. The cast iron is formed by casting, austenitizing, quenching, and tempering the alloy.
摘要:
Provided is an iron-based amorphous alloy and a method of manufacturing the same.More particularly, provided is an high carbon iron-based amorphous alloy expressed by a general formula FeαCβSiγBxPyCrz, wherein α, β, γ, x, y and z are atomic % of iron (Fe), carbon (C), silicon (Si), boron (B), phosphorus (P), and chrome (Cr) respectively, wherein α is expressed by α=100−(β+γ+x+y+z) atomic %, β is expressed by 13.5 atomic %≦β≦17.8 atomic %, γ is expressed by 0.30 atomic %≦γ≦1.50 atomic %, x is expressed by 0.1 atomic %≦x≦4.0 atomic %, y is expressed by 0.8 atomic %≦y≦7.7 atomic %, and z is expressed by 0.1 atomic %≦z≦3.0 atomic %.
摘要:
A nodular graphite cast iron, a method for fabricating a vane for a rotary compressor using nodular graphite cast iron, and a vane for a rotary compressor using the same are provided. The nodular graphite cast iron includes 3.4 wt % to 3.9 wt % of carbon (C), 2.0 wt % to 3.0 wt % of silicon (Si), 0.3 wt % to 1.0 wt % of manganese (Mn), 0.1 wt % to 1.0 wt % of chromium (Cr), 0.04 wt % to 0.15 wt % of titanium (Ti), less than 0.08 w % of phosphorus (P), less than 0.025 wt % of sulphur (S), 0.03 wt % to 0.05 wt % of magnesium (Mg), 0.02 wt % to 0.04 wt % of rare earth resource, iron (Fe) and impurities as the remnants, and includes a bainite matrix structure, nodular graphite, and 15 vol % to 35 vol % of carbide.
摘要:
A piston ring formed of cast iron provides improved machinability and exceptional performance and minimum costs. The cast iron includes 2.2 to 2.9 wt. % carbon, 3.2 to 4.2 wt. % silicon, 0.75 to 1.25 wt. % copper, 1.0 to 1.5 wt. % manganese, 0.09 to 0.15 wt. % sulfur, not greater than 0.2 wt. % phosphorous, and an average carbon equivalent of 3.8. The cast iron preferably includes a matrix of martensite with MnS and carbides dispersed therein. The matrix is also preferably free of ferrite, austenite, and steadite. The cast iron is formed by casting, autenitizing, quenching, and tempering the alloy.
摘要:
The present invention provides a nodular cast iron foundation pile pipe and a method for preparing same, including following steps: (1) preparation before pipe casting: including molten iron preparation, spheroidization and coating spraying on an inner wall of a pipe mold; (2) pipe casting process: including centrifugal casting and pipe drawing; (3) annealing process; (4) finishing process. The present invention further provides the foundation pile pipe manufactured with the above-mentioned method wherein the flange and the foundation pile pipe are integrally cast or welded. In the present invention, the nodular cast iron is used as the material of the foundation pile pipe instead of Q345 steel used in the prior art. As a result, the overall strength is enhanced. The present invention possesses advantages such as corrosion resistance, long service life, low manufacturing cost, low labor intensity, short construction period and being suitable for mechanized construction.
摘要:
Austempered ductile iron (ADI) for components requiring high strength and/or ductility, which has a silicon content of 3.35 weight-% to 4.60 weight-%, and which is obtainable by performing an ADI-heat treatment using an austenitization temperature of at least 910° C.
摘要:
The invention relates to a method of heat treating a cast iron having graphite particles, in particular a cast iron having graphite nodules with a substantially spherical geometry. The method comprises the step of subjecting the cast iron to a first austenitizing temperature, in order to obtain a cast iron having an austenite matrix with a substantially homogeneous carbon content. Subsequently, at least part of the cast iron is subjected to at least a second, different austenitizing temperature in order to change, in at least part of the cast iron, the carbon concentration in a part of the matrix surrounding the (spherical) geometry of the graphite particles. The method yields improved controllability on strength properties characteristics for cast irons including malleable irons, in particular for ductile iron.