摘要:
A working machine swing control system is provided with an actual rotation speed sensor and a controller. The actual rotation speed sensor senses an actual rotation speed of a swing motor. The controller controls a drive torque of a drive unit, which drives the swing motor, such that a difference between a target rotation speed outputted from a swing control device and the actual rotation speed outputted from the actual rotation speed sensor is reduced to zero. The swing control system includes a correction device for correcting the target rotation speed outputted from the swing control device according to a work posture of working equipment and a work load on the working equipment.
摘要:
A motor control system for a hoist drive having an electric motor operationally connected to a hoisting member for hoisting a load, the motor control system being adapted to generate a final angular frequency reference (ω*s) for control of the electric motor, the motor control system comprising a power limiter means adapted to generate a correction term (ωs,cor) for angular frequency reference. The power limiter means comprises an integrating controller means, the power limiter means being adapted to generate the correction term (ωs,cor) for angular frequency reference using output signal IP of the integrating controller means, initial data of the integrating controller means including information relating to actual value of the power of the electric motor and a power related limit value of the electric motor.
摘要:
The present application relates to an anticipatory control system and method for electric motor applied to cyclic loads, said system including an electric motor (10), at least an electronic control unit (20), at least an electronic power unit (30), and at least an electric position-monitoring device. The electric motor (10) is electrically driven by the electronic power unit (30), the electronic power unit (30) is electrically controlled by the electronic control unit (20), the system includes an average speed controller and a device for monitoring the position of the electric motor, both implemented by the electronic control unit (20). The speed controller is designed to monitor an average speed of the electric motor (10), the position-monitoring device is designed to monitor and store an instantaneous speed (Vi) in each position of the electric motor (10) and estimate, for each position, an instantaneous control speed (Vc) of the electric motor (10), the electronic control unit (20) is designed to calculate an average voltage (Vm) from the average speed monitored, and the electronic power unit (30) is designed to drive electrically the electric motor 10 by a control voltage value (Vcontrol). This control voltage value (Vcontrol) is calculated by multiplying the average voltage (Vm) by the result of the division of the instantaneous control speed (Vc) by the average speed.
摘要:
A portable service controller for controlling an electro-mechanical actuator, the portable service controller includes a battery configured to power the portable service controller and a user interface configured to receive input from a user and to responsively generate an input signal. The portable service controller also includes a phase sequencer configured to convert the input signal into a series of timed output signals and a driver circuit configured to convert the series of timed output signals into inverter gating signals. The portable service controller further includes a three-phase brushless motor inverter configured to convert inverter gating signals into control signals for a brushless motor of the electro-mechanical actuator. The portable service controller contains a motor brake on/off circuitry for engaging and disengaging the electro-mechanical actuator motor brake. The battery, the three-phase brushless motor inverter, the driver circuit, the phase sequencer and the user interface are all disposed in a housing.
摘要:
A system and method are disclosed for turning off the voltage to a pump jack electric motor during predetermined periods of time to save energy. In the method, the motor's response to closed-loop control may be evaluated over several pump strokes. The periods of the pump stroke when it is feasible to turn off the motor may be identified. The consistency of the measurements over several strokes may be evaluated. The motor may be turned off during predetermined periods on subsequent pump strokes when each pump stroke shows sufficiently similar behavior to that predicted during the closed-loop control process. The system may return to the closed-loop control process after a predetermined period of time to adjust to any changes in the system.
摘要:
An electromagnetic shielding structure includes a first shielding material disposed at a first location with respect to at least one radiation source and a second shielding material attached with the first shielding material by fastening means. The second shielding material is disposed at a second location with respect to the at least one electromagnetic radiation source so as to define a predetermined gap between the first shielding material and the second shielding material. The first shielding material shields at least part of first frequency electromagnetic radiations generated from the at least one electromagnetic radiation source and penetrating through the second shielding material and the predetermined gap. The second shielding material shields at least part of second frequency electromagnetic radiations generated from the at least one electromagnetic radiation source.
摘要:
A system and process includes continuously determining an applied armature voltage supplied to a polyphase synchronous machine for which a maximum mechanical load is characterized by a pull-out torque. The armature voltage is supplied from a power source via one of many taps of a regulating transformer. The armature voltage being supplied from the power source to the machine is changed by selecting one of the voltage levels from the taps of the regulating transformer. The tap voltage levels are selected based on the determined applied armature voltage to minimize power consumption of the machine while ensuring based on a predetermined confidence level that the pull-out torque of the machine will not be exceeded.
摘要:
A system and process includes continuously determining an applied armature voltage supplied to a polyphase synchronous machine for which a maximum mechanical load is characterized by a pull-out torque. The armature voltage is supplied from a power source via one of many taps of a regulating transformer. The armature voltage being supplied from the power source to the machine is changed by selecting one of the voltage levels from the taps of the regulating transformer. The tap voltage levels are selected based on the determined applied armature voltage to minimize power consumption of the machine while ensuring based on a predetermined confidence level that the pull-out torque of the machine will not be exceeded.
摘要:
A voltage detection section and current detection section detect a voltage and current supplied to a motor, and the detected voltage and current are supplied to a position detection section. An angular speed output from the position detection section is supplied to a differentiator to output an angular acceleration. A fundamental wave component extraction section extracts a fundamental wave component of the angular acceleration, and the extracted fundamental wave component is supplied to an amplitude adjustment section. The output of the amplitude adjustment section is subtracted from the average current command by a subtraction section. This subtraction result, current detection value, and the rotor position from the position detection section are supplied to a current control section to carry out the current control operation so as to obtain a current command. The current command is supplied to an inverter to control the voltage and current so as to suppress the speed changing due to the load torque changing. Thus, stability is improved, and a decrease in cost is realized.
摘要:
According to input parameters, a controller carries out: generation of a voltage command value for each of d- and q-axes; conversion of the voltage command value for each of the d- and q-axes into a voltage command value for each of the multiphase windings; and control of a multiphase inverter based on the voltage command value for each of the multiphase windings. The controller adds, to the voltage command value for the q-axis, a first compensation voltage value for compensating torque ripples to thereby output a compensated voltage command value for the q-axis. The first compensation voltage value contains m-th harmonic components in the AC motor and varies depending on the rotational angle of the rotor, the m corresponding to the number of phase of the multiphase windings. The controller uses, as the voltage command value for the q-axis, the compensated voltage command value for the q-axis.