Abstract:
A system, method, and apparatus for learning music through an educational audio track embodied on a computer readable medium are presented. The system can have components including a processor, an input device, a database, a transformation module, an emulation recording module, an integration engine, an output module, and an output device, wherein each component is operable in itself to perform it's function in the system and operable with other system components to provide a system to a user for learning music.
Abstract:
The teachings described herein are generally directed to a system, method, and apparatus for learning music through an educational audio track embodied on a computer readable medium. The system can comprise components including a processor, an input device, a database, a transformation module, an emulation recording module, an integration engine, an output module, and an output device, wherein each component is operable in itself to perform it's function in the system and operable with other system components to provide a system to a user for learning music.
Abstract:
A portable sound processing device [1000] designed to retrofit a portable digital player (PDP) such as an iPod sold by Apple, Inc., includes a display [1201] for interacting with a user, a plurality of input devices [1103-1133] for receiving input from a user. The portable sound processing device [1000] has internal or external pre-recorded music which may be mixed with the live input from a musical instrument [3]. The processor [1000] may perform digital signal processing to change the pitch while keeping the tempo the same for pre-recorded music to match the key of the instrument being played. The tempo may be adjusted while not affecting the pitch allowing a musician to practice a song at a slower pace. It may also highlight or remove a specific instrument for practice purposes. The result is a portable signal processing device [1000] which aids music transcription, learning and study.
Abstract:
An audio player comprises a means of dynamically sensing the rate of repetitive motion of the user, a means for storing digital music files, a means for retrieving and dynamically playing at least one of said music files at a rate approximately equal to the sensed rate of repetitive motion of the user, and a means for dynamically calculating and displaying information and/or statistics regarding at least one of the music file and the user. Such a device can play music, or other audio content with a repetitive beat, in substantial synchrony with the repetitive motion of the user. The device also allows the user to dynamically choose or change the music file playing. The device may detect, calculate, and display to the user various information.
Abstract:
An information processing device discriminates a broadcast format of contents including video contents, discriminates a broadcast format valid during reproduction on the display unit, and when a data format of the contents and a data format of the display unit are different, modifies a decoding speed of the broadcast format of the contents so that a reproduction speed is modified to correspond to the broadcast format in the display unit. A simplified arrangement is obtained with an easy processing. Smooth reproduction is easily obtained by simply sequentially decoding frames of the video contents at a certain reproduction speed.
Abstract:
To compose a series of musical tones, a waveform generating device reads out a plurality of time axis segments of waveform data in optional order by compressing or expanding the segments of waveform data in conformance with performance data. With the waveform generating device of the present invention, first performance data are updated in conformance with tempo alterations of second performance data. Based on the updating, a time compression and expansion percentage of each waveform data segment is derived. In those cases where there have been performance tempo alterations, the waveform data can be generated in conformance with the tempo alterations.
Abstract:
A portable sound processing device [1000] designed to retrofit a portable digital player (PDP) such as an ipod sold by Apple, Inc., includes a display [1201] for interacting with a user, a plurality of input devices [1103-1133] for receiving input from a user. The portable sound processing device [1000] has internal or external pre-recorded music which may be mixed with the live input from a musical instrument [3]. The processor [1000] may perform digital signal processing to change the pitch while keeping the tempo the same for pre-recorded music to match the key of the instrument being played. The tempo may be adjusted while not affecting the pitch allowing a musician to practice a song at a slower pace. It may also highlight or remove a specific instrument for practice purposes. The result is a portable signal processing device [1000] which aids music transcription, learning and study.
Abstract:
To compose a series of musical tones, a waveform generating device reads out a plurality of time axis segments of waveform data in optional order by compressing or expanding the segments of waveform data in conformance with performance data. With the waveform generating device of the present invention, first performance data are updated in conformance with tempo alterations of second performance data. Based on the updating, a time compression and expansion percentage of each waveform data segment is derived. In those cases where there have been performance tempo alterations, the waveform data can be generated in conformance with the tempo alterations.
Abstract:
A method and apparatus implement time compression and expansion of audio data, with dynamic tempo change during playback. Dynamic changes in tempo are implemented at specific points in the audio signal corresponding to local minimums in the fade-in and fade-out characteristics of the compression/expansion scheme. An audio signal is marked to define temporal slices of audio data. Mark positions may be selected to minimize significant transient activity midway between consecutive marks. Fade-in and fade-out functions are associated with the leading side and trailing side, respectively, of each mark, creating a series of cross-fading “mounds” with peaks at each mark. When a tempo change is requested (e.g., a user selects a new tempo value in a user interface), the tempo change is delayed until the start of the next “mound” (i.e., the next fade-in). Thus, despite the tempo change, each mound uses a contiguous set of audio data, preventing the clicks and pops associated with skips in the audio data. Cross-fading minimizes any effects of desynchronization caused by overlapping mounds of differing speeds.
Abstract:
A sound control apparatus is provided in a portable terminal for sounding a music tone in association with operation of the portable terminal, which is controlled by a main CPU. In the sound control apparatus, a memory memorizes music information representing a music tone and configuration information associated to a timbre of the music tone. An information acquiring section acquires the music information and the configuration information from the memory. A tone generating section is configured by the acquired configuration information to create a timbre specified by the configuration information. The tone generating section operates according to the acquired music information to generate the music tone being represented by the music information and having the specified timbre. A dedicated CPU is provided separately from the main CPU for controlling the memory, the information acquiring section and the tone generating section.