Abstract:
The method, system, and computer-readable medium facilitates monitoring a vehicle operator, the environment ahead of the vehicle, and/or forces acting on the vehicle during the course of vehicle operation to determine whether the vehicle operator is impaired (e.g., distracted, drowsy, intoxicated), alerting the vehicle operator when impairment is detected, and log data relating to vehicle operator impairment for further analysis. The method, system, and computer-readable medium may monitor the vehicle operator, the environment ahead of the vehicle, and/or forces acting on the vehicle using either or both of optical sensors or accelerometers. In particular, one optical sensor may monitor the vehicle operator to detect eye blinks, head nods, head rotations, and/or gaze fixation. Another optical sensor may monitor the road ahead of the vehicle to detect lane deviation, lane centering, and time to collision. The accelerometers may detect acceleration in the direction of vehicle travel and/or lateral acceleration.
Abstract:
A system for creating a coaching session comprises one or more processors and one or more memories. The one or more processors are in communication with the event detector and configured to: receive data of a driving event from an event detector associated with a vehicle; analyze the driving event data to identify risky driving behavior; and create a coaching session in order to reduce the identified risky driving behavior. The coaching session incorporates at least a portion of the data of the driving event. The one or more memories are coupled to the one or more processors and configured to provide the one or more processors instructions.
Abstract:
Provided are embodiments of systems, computer medium and computer-implemented methods for monitoring a status of a driver when driving a vehicle. A system including a set of sensors configured to be disposed in the vehicle to collect driver status data. The system processing the driver status data to determine whether the driver is experiencing a health condition or crisis, and whether the driver's body position is ergonomic. In response to a health condition, generating a health alert indicative of the health condition. In response to the driver a health crisis generating a health alert indicative of the health crisis and inhibiting operation of the vehicle. In response to the driver's body position not being ergonomic, identifying and providing adjustments in the body position of the driver that need to be made for the driver to be positioned in a an ergonomically acceptable body position.
Abstract:
A system for creating a coaching session comprises one or more processors and one or more memories. The one or more processors are in communication with the event detector and configured to: receive data of a driving event from an event detector associated with a vehicle; analyze the driving event data to identify risky driving behavior; and create a coaching session in order to reduce the identified risky driving behavior. The coaching session incorporates at least a portion of the data of the driving event. The one or more memories are coupled to the one or more processors and configured to provide the one or more processors instructions.
Abstract:
A vehicle travel control system includes a cruise control ECU, an engine control ECU and a brake control ECU. The cruise control ECU checks whether a driver's actual concentration degree is insufficient relative to a required concentration degree in terms of safety in surrounding environments of the subject vehicle. When such possibility arises, even during the cruise control, the speed of the subject vehicle is controlled to match a control vehicle speed lower than a set vehicle speed or a control distance to a preceding vehicle.
Abstract:
Driver distraction in a motor vehicle is assessed by capacitively detecting the driver's head pose relative to the forward direction of vehicle motion. A symmetrical array of sensor electrodes is disposed in the cockpit ceiling above the driver's head, and pairs of electrodes disposed along varying axes of rotation with respect to the forward direction are successively activated for capacitance measurement. The capacitance measurements are combined to form a signal whose strength depends on the degree of alignment between the driver's head (i.e., the head pose) and the respective axes of rotation, and the driver's head pose is calculated to assess driver distraction.
Abstract:
A system for controlling the operation of an in-vehicle multi-media system based on identifying operating conditions for the vehicle. Various operational rules can be applied to the multi-media system based on an identified operating condition. Operating conditions can include a variety of criteria including traffic, weather, vehicle operating parameters, or the like. Once a condition is identified, an operating rule corresponding to that condition can be imposed on the operation of the multi-media system.
Abstract:
A collision probability index value corresponding to a probability of collision between a host vehicle and an obstacle is calculated based on the information indicating the relative relationship between the host vehicle and the obstacle; and the alarming braking operation is performed to cause a driver to recognize that a collision may occur by changing at least one of the drive power and the braking force when the collision probability index value reaches a predetermined threshold value. In the alarming braking operation, a target acceleration that is used as a target value in the alarming braking operation is set based on the acceleration of the host vehicle, which is detected when the collision probability index value reaches the predetermined threshold value; and at least one of the drive power and the braking force is controlled so that the target acceleration is achieved.
Abstract:
The present invention relates generally to systems and methods for monitoring driving behavior and providing feedback to the driver. The systems evaluate driving behavior and relay feedback to the driver in a fashion that is customized to take into account individual characteristics and demographic characteristics of the driver.
Abstract:
A vehicle travel control system includes a cruise control ECU, an engine control ECU and a brake control ECU. The cruise control ECU checks whether a driver's actual concentration degree is insufficient relative to a required concentration degree in terms of safety in surrounding environments of the subject vehicle. When such possibility arises, even during the cruise control, the speed of the subject vehicle is controlled to match a control vehicle speed lower than a set vehicle speed or a control distance to a preceding vehicle.