Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates in a Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). Embodiments herein disclose a system for multiple-access in a wireless communication system. The system includes a base station (BS) configured to implement an uplink transmission configuration including a resource pool having a plurality of resource blocks (RBs) allocated to support a contention-based multiple access or a grant-free multiple access. The BS is configured to signal the resource pool to a plurality of UEs. The UE from the plurality UEs is configured to receive the resource pool from the BS and send an uplink transmission to the BS by accessing at least one RB from the plurality of RBs allocated in the resource pool.
Abstract:
Method and system for managing hidden node problem in a communication network. A receiving node in the system, upon receiving a data transmission request from at least one transmitting node, dynamically checks status of the channel between the transmitting node and the receiving node. If the channel is found to be clear for transmission, then the receiving node sends a message that indicates that the channel is clear, to the transmitting node, and the transmitting node starts transmitting the data. Upon receiving a message from the receiving node that the channel is not clear for transmission, then the transmitting node waits for a particular time period and attempts the connection again.
Abstract:
Embodiments herein provide a method for determining PO by UEs in an eDRX cycle. The method includes determining PHs in the eDRX cycle based on estimated values of UE_ID_H and number of hyper-frames in the eDRX cycle. The method includes determining a first radio frame of PTW based on a determined value of NPTW and ieDRX. The method includes determining a last radio frame of PTW based on the first radio frame and length of the PTW. The method includes determining PFs in the PTW. The determination of PFs is based on the UE_ID. The method includes determining the POs, in each of the determined PFs, based on an index associated with each of the POs. The index associated with each PO is computed based on the UE_ID, number of frames available for paging in a DRX cycle, and number of sub-frames available for paging in each PF.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A method and an apparatus for operating a base station and a terminal in a wireless communication system using an unlicensed band are provided. The base station can determine at least one channel in at least one unlicensed band using one of a single channel operation and a multi-channel operation, acquire the at least one channel according to a data transmission request, and transmit a channel preservation signal until a start point of a first subframe transmitted on the acquired at least one channel.
Abstract:
Hybrid Automatic Repeat Request (HARQ) operation in an asymmetric multicarrier communication network environment is performed, in one embodiment, by receiving resource allocation information from a base station, transmitting the HARQ packet to the base station in a transmit time interval (TTI) corresponding a first or second partition of an uplink allocation interval on a second carrier, and receiving HARQ feedback information corresponding to a previous HARQ packet transmission. A TTI in a subsequent uplink allocation interval is determined based on the partition of the uplink allocation interval in which the HARQ packet is transmitted if the HARQ feedback information indicates negative acknowledgement. The HARQ packet is transmitted to the base station in the determined transmit time interval of the subsequent uplink allocation interval on the second carrier.
Abstract:
A method and system for acquiring mmWave carrier in a wireless communication network is disclosed. In one embodiment, an MS acquires a low frequency carrier and then acquires the high frequency carrier. Since the low frequency carrier and the high frequency carrier are transmitted by same BS, the BS provides assistance information on the acquired low frequency carrier to the MS to acquire a synchronization signal which is transmitted on a high frequency carrier using beamforming. The assistance information includes synchronization signal beam time slots, synchronization signal beams which the MS needs to search, beam ID and so on. Based on the assistance information, the MS monitors the high frequency carrier to search and acquire the synchronization beam signal transmitted on the high frequency carrier. The MS determines the beam ID of the received synchronization beam signal and reports to the BS on the low frequency carrier.
Abstract:
The present invention provides a method and apparatus for performing an uplink Hybrid Automatic Repeat Request (HARQ) operation in an asymmetric multicarrier communication network environment. In one embodiment, a method includes transmitting a HARQ packet to a base station in a transmit time interval of one of a plurality of partitions of an uplink allocation interval on a first carrier by a mobile station. Then, the method includes determining a partition of the uplink allocation interval in which the HARQ packet is transmitted, and determining a HARQ feedback region in the subsequent downlink subframe corresponding to the determined partition. The method further includes receiving HARQ feedback information in the determined HARQ feedback region in the subsequent downlink subframe on a second carrier from the base station.
Abstract:
A method, a user equipment, an eNB are provided for controlling DRX in a wireless communication system. A method includes receiving, from a master evolved Node B (MeNB), an indication that a Slave eNB (SeNB) is to be monitored; and monitoring the SeNB, in response to the indicator. The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE).
Abstract:
In wireless communication system each MS is assigned a globally unique address. The method and system use one of these globally unique addresses to identify the MS. The efficient method of signaling this large size MS address (MS ID) is proposed. The ‘n’ bit MS ID is divided into ‘p’ parts wherein ‘p’ is greater than 1. The MS is addressed or identified using ‘x’ parts from a set of ‘p’ parts of MS ID, wherein ‘x’
Abstract:
A method and an apparatus are provided for managing quality of service (QoS) in a communication network. A plurality of data flows related to at least one application associated with a user equipment (UE) is received. At least one data flow that requires QoS management related to the at least one application is identified from the plurality of data flows based on an analysis of at least one of a plurality of attributes related to the at least one application. The at least one data flow is classified into a QoS class associated with the at least one application. The at least one data flow is prioritized based on the QoS class.