DELIVERY TIME WINDOWS FOR LOW LATENCY COMMUNICATIONS

    公开(公告)号:US20220141789A1

    公开(公告)日:2022-05-05

    申请号:US17576479

    申请日:2022-01-14

    Abstract: Generally, the described techniques provide for a device determining or receiving signaling including a packet delivery time window configuration that indicates delivery windows within which transmissions may be held and/or delivery opportunities within which communications are expected to be transmitted. For example, the device may identify a packet delivery time window configuration for communications with another device. The packet delivery window configuration may indicate a periodicity, offset, start time, end time, and/or duration of the delivery windows, among other information. Based on the identified packet delivery time window configuration, the device may delay transmission of the data packet (e.g., for the duration of one or more configured delivery windows). At, for example, the end of the respective delivery window, the device may deliver the data packet to a network device for which the information of the data packet is to be used.

    UE-centric clustering and efficient scheduling for CoMP

    公开(公告)号:US11096191B2

    公开(公告)日:2021-08-17

    申请号:US16415895

    申请日:2019-05-17

    Abstract: Certain aspects of the present disclosure provide techniques for user equipment (UE)-centric clustering and efficient scheduling for coordinated multipoint (CoMP). A method for UE-centric clustering and central scheduling includes determining a UE conflict graph. Vertices in the UE conflict graph are UEs for which there is a transmission and edges between vertices are UEs that have a scheduling conflict. The method includes transmitting signaling to schedule the UEs with resources for the transmission based on the UE conflict graph. A method for UE-centric clustering and cluster scheduling includes determining a cluster graph. Vertices in the cluster graph are CoMP clusters for one or more UEs for which there is a transmission and edges between vertices are CoMP clusters that have a scheduling conflict. The method includes transmitting signaling to assign resources to the CoMP clusters based on the cluster graph.

    Clock synchronization over a wireless connection

    公开(公告)号:US10992402B2

    公开(公告)日:2021-04-27

    申请号:US16598932

    申请日:2019-10-10

    Abstract: Techniques for clock synchronization over a wireless connection are provided. A first wireless node determines an offset between a first clock used by the first wireless node for a wired connection between the first wireless node and at least one upstream node and a second clock used by the first wireless node for a wireless connection between the first wireless node and a second wireless node on the downstream. The first wireless node transmits an indication of the determined offset to the second wireless node for use by the second wireless node to calibrate a third clock corresponding to the first clock to synchronize the third clock with the first clock, wherein the third clock is used by the second wireless node for a second wired connection with at least one downstream node.

    Time synchronization techniques for wireless communications

    公开(公告)号:US10939400B2

    公开(公告)日:2021-03-02

    申请号:US16221198

    申请日:2018-12-14

    Abstract: Methods, systems, and devices for wireless communications are described that provide time synchronization via wireless communications for devices that use strict timing synchronization. A user equipment (UE) may obtain time synchronization via a wireless connection between the UE and a timing source that may be associated with a base station (or another wireless device). In some cases, the timing source may be synchronized at the UE by determining, using periodic synchronization resources, a propagation delay between the UE and the base station that is based on a timing of a line-of-sight instance of a transmission between the base station and the UE. The propagation delay may be used to determine a timing advance value for use in timing synchronization. One or more devices may be coupled with the UE and the UE may provide commands to the one or more devices that are synchronized according to the synchronized timing source.

    Configurator key package for device provisioning protocol (DPP)

    公开(公告)号:US10547448B2

    公开(公告)日:2020-01-28

    申请号:US15648437

    申请日:2017-07-12

    Abstract: This disclosure provides systems, methods, and apparatus, including computer programs encoded on computer storage media, for enhancing a device provisioning protocol (DPP) to support multiple configurators. In one aspect, a first configurator device can export a configurator key package. In one aspect, the configurator key package may be used for backup and restore of the configurator keys. The configurator key package may include a configurator private signing key and, optionally, a configurator public verification key. A second configurator device may obtain the configurator key package and also may obtain decryption information which can be used to decrypt the configurator key package. Thus, in another aspect, both the first configurator device and the second configurator device can use the same configurator keys with the device provisioning protocol to configure enrollees to a network.

    TIME-SENSITIVE NETWORKING FRAME PRE-EMPTION ACROSS CELLULAR INTERFACE

    公开(公告)号:US20190289616A1

    公开(公告)日:2019-09-19

    申请号:US16353906

    申请日:2019-03-14

    Abstract: Methods, systems, and devices for wireless communications are described. An access node may schedule traffic with different levels of priority for communications with a user equipment. The access node may receive a time-sensitive networking time-aware schedule from a first interface via an Ethernet frame that defines a set of periodic time intervals reserved for transmitting traffic with a high-priority (e.g., hard-real time traffic). In some cases, one or more frequency resources may additionally be reserved for the high-priority traffic. Accordingly, during the reserved time intervals, if the high-priority traffic is present, the access node may transmit the high-priority traffic on the reserved frequency resource(s). Outside the reserved time intervals, the access node may schedule lower-priority traffic on the reserved frequency resource(s) in addition to the other resources. Alternatively, high-priority traffic may interrupt previously scheduled lower-priority traffic during the reserved time intervals if high-priority traffic is present.

Patent Agency Ranking