Abstract:
A novel key management approach is provided for securing communication handoffs between an access terminal and two access points. An access terminal establishes a secure communication session with a first access point based on a first master session key based on a master transient key. The access terminal obtains a second access point identifier associated with a second access point and sends a message associated with a handoff to either the first access point or the second access point. The access terminal generates a second master session key based on at least the master transient key and the second access point identifier. The second master session key is used for secure communications with the second access point in connection with an intra-authenticator handoff from the first access point to the second access point. The access terminal then moves the secure communication session to the second access point.
Abstract:
The disclosure provides a mechanism where a user equipment (UE) may communicate with a neighbor UE of the UE's neighbor UE by utilizing the UE's neighbor UE as a relay for the communication between the UE and the neighbor UE of the UE's neighbor UE. In an aspect, the first UE receives a discovery message from a second UE, the discovery message including information about 1-hop neighbor UEs of the second UE. The first UE determines to communicate with a third UE based on the discovery message, the third UE being one of the 1-hop neighbor UEs of the second UE. The first UE requests the second UE to operate as a relay for communication between the first UE and the third UE. The first UE communicates with the third UE through the second UE.
Abstract:
Methods and apparatus are described for refining, e.g., reducing, a paging area corresponding to a user equipment device, e.g., a cellular inactive UE device. Various embodiments are well suited for communications systems in which user equipment devices participate in peer to peer communications networks in which direct user device to user device communications are employed. A user equipment device participating in a peer to peer network transmits discovery signals. A femto base station and/or a cellular active UE device in the local vicinity of the UE device transmitting the peer to peer discovery signal eavesdrops on the peer discovery signaling and detects the presence of the cellular inactive UE device. The detection of the cellular inactive UE device is reported to a MME. The MME determines a paging area corresponding to the detected UE device based on the reported information and the location of the reporting device.
Abstract:
Techniques are described for wireless communication. A method for wireless communication at a first base station (e.g., corresponding to, associated with, or included in a first cell) includes receiving location information from a vehicle; identifying, based at least in part on the location information, a plurality of cells from which to broadcast a location message associated with the vehicle, where the plurality of cells include at least a cell of a second base station; and communicating with at least the second base station regarding a broadcast of the location message. A method for wireless communication at a vehicle include transmitting location information from the vehicle to a base station on an access stratum (AS) layer, and transmitting location message information to the base station. Numerous other aspects are provided.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with providing additional security for communication of sensitive information within a LTE based WWAN. In one example, a communications device is equipped to generate a keystream based on a mobility management entity-user equipment (MME-UE) key, a non-access stratum (NAS) message count value, and a contextual string associated with an informational element, and the contextual information, and cryptographically process the informational element using the generated keystream. In such an example, the communications device may be a UE, a MME, etc.
Abstract:
Aspects describe spectrum authorization, access control, and configuration parameters validation. Devices in an ad-hoc or peer-to-peer configuration can utilize a licensed spectrum if the devices are authorized to use the spectrum, which can be determined automatically. Aspects relate to distribution of authorization tickets by an authorization server as a result of validating a device's credentials and services to which the device is entitled. An exchange and verification of authorization tickets can be performed by devices as a condition for enabling a validated wireless link using the spectrum.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with providing private expression protection in a wireless communications network. In one example, a UE is equipped to internally receive a request (e.g., from an application running on the UE) to announce a private expression and/or at least a reference to an expression-code associated with the private expression, and determine whether the reference to the expression-code and/or the expression-code matches a stored instance of the expression-code. In an aspect, the UE may be equipped to announce the at least one of the private expression or the expression-code when stored instance of the expression-code corresponds to the expression-code received with the request. In another aspect, the UE may be equipped to prohibit announcement of any information associated with the private expression when stored expression-code does not correspond to the expression-code received with the request.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with facilitating secure D2D communications in a LTE based WWAN. In one example, a UE is equipped to send a shared key request using a first non-access stratum (NAS) message to a MME, calculate a first UE key based on a MME-first UE key, an uplink count value, and at least a portion of contextual information, receive a second NAS message from the MME, and calculate a final UE key based at least on the first UE key. In another example, a MME is equipped to receive a NAS message such as the message send by the first UE, calculate a first UE key, receive a message at least indicating successful contact with the second UE, and send a second NAS message to the first UE indicating the successful contact.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with use of expressions with D2D communications in a LTE based WWAN. In one example, a MME is equipped to receive a request from a first UE to establish a communication link with a second UE based on a first expression pair, determine whether the UEs can use a first context associated with previously used expression pair, and provide information associated with the first context to the first UE. In another example, a UE is equipped to send a connection request, to its MME, to establish a communication link with a second UE based on a first expression pair, receive at least a portion of information associated with a first context between the UEs based on a previously used expression pair, and establish the communication link with the second UE using the received information.