Abstract:
A method for authenticating a message by a wireless device is described. The wireless device obtains the input message. The wireless device generates a keystream. The wireless device computes a message authentication code using the keystream and a universal hash function. The universal hash function is computed using carryless multiplication.
Abstract:
One feature pertains to an efficient algorithm to protect the integrity of a plurality of data structures by computing an aggregate message authentication code (MAC) over the plurality of data structures. An aggregate MAC may be constructed from a plurality of MAC values associated with a plurality of data structures. The aggregate MAC binds the plurality of data structures and attests to their combined integrity simultaneously. Rather than checking the integrity of a data structure when it is accessed, the aggregate MAC is periodically checked or verified, to ascertain the integrity of all data structures. If the aggregate MAC computed is different from the previously stored aggregate MAC, then all data structures that are part of the aggregate MAC are discarded.
Abstract:
One feature pertains to a mechanism to secure a data structure by using a computationally efficient algorithm. A plurality of keys and/or masks may be pre-generated upon boot-up or initiation of a session. An authentication code may be computed for each data structure (e.g., memory block or header block) by selecting a subset of the plurality of pre-generated keys and/or a mask from the plurality of pre-generated masks. The authentication code may be stored within the data structure for future verification of the integrity of the data structure. The keys and/or masks used for all authentication codes (e.g., for other data structures) may be selected from the same plurality of keys and/or masks during the same cycle or session.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with facilitating secure D2D communications in a LTE based WWAN. In one example, a UE is equipped to send a shared key request using a first non-access stratum (NAS) message to a MME, calculate a first UE key based on a MME-first UE key, an uplink count value, and at least a portion of contextual information, receive a second NAS message from the MME, and calculate a final UE key based at least on the first UE key. In another example, a MME is equipped to receive a NAS message such as the message send by the first UE, calculate a first UE key, receive a message at least indicating successful contact with the second UE, and send a second NAS message to the first UE indicating the successful contact.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with providing additional security for communication of sensitive information within a LTE based WWAN. In one example, a communications device is equipped to generate a keystream based on a mobility management entity-user equipment (MME-UE) key, a non-access stratum (NAS) message count value, and a contextual string associated with an informational element, and the contextual information, and cryptographically process the informational element using the generated keystream. In such an example, the communications device may be a UE, a MME, etc.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with providing additional security for communication of sensitive information within a LTE based WWAN. In one example, a communications device is equipped to generate a keystream based on a mobility management entity-user equipment (MME-UE) key, a non-access stratum (NAS) message count value, and a contextual string associated with an informational element, and the contextual information, and cryptographically process the informational element using the generated keystream. In such an example, the communications device may be a UE, a MME, etc.
Abstract:
A method for authenticating a message by a wireless device is described. The wireless device obtains the input message. The wireless device generates a keystream. The wireless device computes a message authentication code using the keystream and a universal hash function. The universal hash function is computed using carryless multiplication.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with facilitating secure D2D communications in a LTE based WWAN. In one example, a UE is equipped to send a shared key request using a first non-access stratum (NAS) message to a MME, calculate a first UE key based on a MME-first UE key, an uplink count value, and at least a portion of contextual information, receive a second NAS message from the MME, and calculate a final UE key based at least on the first UE key. In another example, a MME is equipped to receive a NAS message such as the message send by the first UE, calculate a first UE key, receive a message at least indicating successful contact with the second UE, and send a second NAS message to the first UE indicating the successful contact.