Abstract:
Systems and methods for co-existence between wireless Radio Access Technologies (RATs) employing channel reservation on a shared communication medium are disclosed. One or more channel reservation messages defined for a first RAT may be received to reserve the communication medium for a reservation duration, with the communication medium comprising a plurality of component channels. A first component channel may be determined among the plurality of component channels to be protected for operation of a second RAT in accordance with the one or more channel reservation messages. Communication via the first RAT may nevertheless proceed on a second component channel among the plurality of component channels during the reservation duration.
Abstract:
Aspects for reducing interference between networks are provided. A signal transmitted by one or more devices in a first network over a communications medium using an unlicensed frequency spectrum is decoded to determine one or more parameters of a packet in the signal. A level of utilization of the communications medium by the one or more devices in the first network can be estimated based at least in part on a signal strength of the signal and the one or more parameters. A period of time for communicating in a second network over the communications medium using the unlicensed frequency spectrum can be adjusted based at least in part on the level of utilization of the communications medium by the first network. In addition, a number of active transmitters over the communications medium can be determined based at least in part on identifying a source entity related to transmission of the signal, and adjusting the time for communicating in the second network can be further based at least in part on the number of active transmitters.
Abstract:
Techniques are described herein to selectively protect some resources of a transmission opportunity, but not all resources of a transmission opportunity. A base station may schedule resources to be used to communicate data with a user equipment (UE). To indicate to potential interference sources, a silencing message may broadcast to other network entities. The silencing message may include an indication of resources to be protected for a transmission between the base station and the UE. The silencing message may indicate a subset of resources that is less than a set of all resources of a transmission opportunity. In some examples, the silencing message may indicate a subset of frequency subbands of the transmission opportunity. In response to the silencing message, potential interference sources may refrain from communicating data during the indicated subset of resources.
Abstract:
Techniques for managing re-contention on a shared communication medium are disclosed. In order to facilitate re-contending for access to the communication medium, an access point may adjust one or more uplink transmission parameters associated with a triggering condition for invoking a contention timer. In addition or as an alternative, the access point may mute transmission on the communication medium during one or more symbol periods designated for transmission. In addition or as an alternative, the access point may configure a timing advance to create a re-contention gap.
Abstract:
Methods, systems, and devices for wireless communication are described. A device using a first radio access technology (RAT) to communicate over an unlicensed radio frequency spectrum band may identify a communication pattern for a transmission using a second RAT over the unlicensed radio frequency spectrum band. The identification may be based at least in part on signaling received by the device. The device may determine, based at least in part on the communication pattern, a time period for attempting to transmit the unlicensed radio frequency spectrum band using the first RAT.
Abstract:
Systems and methods for Discontinuous Reception (DRX)-aware Carrier Sense Adaptive Transmission (CSAT) communication in shared spectrum are disclosed. An access point, for example, may receive signals via a medium in accordance with a first RAT, and identify utilization of the medium associated with the first RAT based on the received signals. Based on the identified utilization of the medium, operation of a second RAT may be cycled between activated and deactivated periods of transmission over the medium in accordance with a Time Division Multiplexing (TDM) communication pattern. A Medium Access Control (MAC) Control Element (CE) may be transmitted to an access terminal associated with the second RAT to activate or deactivate the access terminal in accordance with the TDM communication pattern. The timing of the MAC CE transmission may be based on the TDM communication pattern and a DRX pattern associated with the access terminal.
Abstract:
Techniques for communication are disclosed. A method may include selecting from a subframe two or more resource elements for control signaling, wherein the subframe includes a plurality of symbol periods and each symbol period includes a plurality of resource elements, wherein the selected two or more resource elements are associated with a concurrent symbol period, and transmitting a resource allocation message to an access terminal, wherein the resource allocation message indicates that the selected two or more resource elements are allocated for control signaling.
Abstract:
Methods and apparatus are provided for receiver measurement assisted access point control. A method operable by a Wi-Fi network entity includes signaling a time to at least one station served by the Wi-Fi network entity for interference measurements. The method includes receiving interference measurements taken at the signaled time from the at least one station. The method includes tuning transmitter parameters based on the received interference measurements.
Abstract:
Techniques for communication management between Radio Access Technologies (RATs) sharing operating spectrum in an unlicensed band of radio frequencies are disclosed. Interference may be mitigated by, for example, receiving signaling via a resource. A first RAT may be used to receive the signaling. Based on the received signaling, utilization of the resource associated with the first RAT may be identified. The identified utilization of the resource may be classified based on an attribute associated with the received signaling and a plurality of thresholds associated with the attribute. The plurality of thresholds may define different classes of utilization. Communication by a second RAT over the resource may be adapted based on the classified utilization of the resource.
Abstract:
Shared spectrum operation is disclosed for sharing spectrum among multiple wireless deployments. Coordination procedures between and among 2nd and 3rd Tier deployments include the use of beacons transmitted by the 2nd Tier for clearing access to spectrum occupied by 3rd Tier users and multiple 3rd Tier deployments sharing resources using a group-listen before talk (LBT) protocol, rather than a per-node LBT protocol. The 2nd Tier beacon signals are transmitted to alert 3rd Tier users of their presence, which, upon detection, will leave the particular spectrum within a predetermined time. For the shared LBT protocol, the 3rd Tier deployments share the channel with each other through an LBT with random backoff, in which the start time of clear channel assessment (CCA) procedure and the random backoff values are synchronized among nodes of the same deployment.