Abstract:
A wearable device interactive system and techniques, methods and apparatuses thereof are described. A wearable device may sense a movement by a user wearing the wearable device. The wearable device may also determine whether a path of the movement corresponds to one or more predefined patterns. The wearable device may further perform one or more operations in response to a determination that the path of the movement corresponds to at least one of the one or more predefined patterns.
Abstract:
Methods and systems of an intelligent nanny assistant are described. A processor may receive image-related data from a monitoring system and determine whether a subject of concern is approaching a predefined area of the environment based on the image-related data. In response to a determination that the subject of concern is approaching the predefined area, the processor may control an information output system to provide visual information, audible information, or both the visual information and the audible information in a way that attracts the subject of concern to move away from the predefined area.
Abstract:
Methods and systems of an intelligent nanny assistant are described. A method may involve periodically or continuously receiving image-related data from a monitoring system that monitors an environment. The method may also involve determining a subject in the environment as a subject of concern and determining a range of sight of the subject of concern. The method may further involve retrieving information related to one or more objects of interest of the subject of concern. The method may involve controlling one or more devices in the environment to provide the information in a way that attracts the subject of concern to move away from a predefined area of the environment.
Abstract:
A buffer write method for a buffer, including a plurality of M-bit storage units, has following steps: obtaining pixel data of a plurality of first N-bit pixels of a picture; calculating a corresponding start address of the buffer for the pixel data of the first N-bit pixels; and storing the first N-bit pixels of the picture according to the calculated start address of the buffer in the M-bit storage units by a buffer controller. The storing step includes fully storing at least one of the first N-bit pixels in one of the M-bit storage units storage units, wherein M and N are positive integers, and M is not divisible by N.
Abstract:
An exemplary data arrangement method for a picture includes at least the following steps: obtaining pixel data of a plurality of first N-bit pixels of the picture; and storing the obtained pixel data of the first N-bit pixels in a plurality of M-bit storage units of a first buffer based on a raster-scan order of the picture, wherein M and N are positive integers, and M is not divisible by N. Besides, at least one of the M-bit storage units is filled with part of the obtained pixel data of the first N-bit pixels, and the first N-bit pixels include at least one pixel divided into a first part stored in one of the M-bit storage units in the first buffer and a second part stored in another of the M-bit storage units in the first buffer.
Abstract:
A motion compensation apparatus includes an interpolation filter device, a pixel fetching circuit, and a pixel dispatching circuit. The interpolation filter device generates interpolated pixels by performing interpolation according to reference pixels. The pixel fetching circuit fetches the reference pixels from a reference frame. The pixel dispatching circuit dispatches pixels to the interpolation filter device, wherein the pixels comprise the reference pixels. At least one of the interpolation filter device, the pixel fetching circuit and the pixel dispatching circuit is shared by a normal mode and a resized reference frame (RRF) mode of motion compensation.
Abstract:
A data arrangement method includes following steps: obtaining pixel data of a plurality of first N-bit pixels of a picture; and storing the obtained pixel data of the first N-bit pixels in a plurality of M-bit storage units of a first buffer according to a block-based scan order of the picture. The picture includes a plurality of data blocks, and the block-based scan order includes a raster-scan order for the data blocks. At least one of the M-bit storage units is filled with part of the obtained pixel data of the first N-bit pixels, M and N are positive integers, M is not divisible by N, and the first N-bit pixels include at least one pixel divided into a first part stored in one of the M-bit storage units in the first buffer and a second part stored in another of the M-bit storage units in the first buffer.