Abstract:
In order to prevent an electrolyte membrane from being broken, and make an assembling steps of a cell easy, in a fuel cell provided with a membrane electrode complex in which catalyst layers are respectively arranged on both surfaces of a electrolyte membrane, first and second gas diffusion layers which are arranged on both surfaces of the electrode complex, separators for respectively supplying reaction gas to the first and second gas diffusion layers, and a gasket for sealing the reaction gas, the gasket is formed on a surface of the gas diffusion layer so as to oppose to the separator, at least the gasket forming portion of the gas diffusion layer has a lower void content than the portion in contact with the catalyst layer, and the gasket arranged in the first and second gas diffusion layers is integrally formed at least via a through hole passing through the first and second gas diffusion layers.
Abstract:
An object of the present invention is to provide a high-reliability battery pack that is capable of exhausting the gas even when the quantity of the gas released from the cell is small, and to provide a vehicle with the battery pack which can improve the reliability. A battery pack 10 has a battery module unit 50 that is formed from a plurality of arranged battery modules 40, each of which has a plurality of cells 30 in a case 41, a cooling air flow passage 20 where a cooling air flow 21 flows, and a gas exhaust duct 60 which forms a gas exhaust passage. The gas exhaust duct 60 extends in an arrangement direction S of the plurality of the battery modules 40 while being contiguous to the battery module unit 50, and takes in the gas 61 released in the case 41 from the cell 30, then exhausts the gas 61 from the battery module 40. The gas exhaust duct 60 is provided with a gas inlet 62 for taking in the gas 61, which communicates with a gas emission hole 42 formed on a surface of the case 41, and an air intake 63 that serves to take in the cooling air flow 21.
Abstract:
A fuel cell system which prevents the deterioration of the fuel cell stack when feeding of the oxidant gas is paused under a load to perform a fuel conservation operation. Controller shuts down oxidant gas compressor and cooling water circulating pump to execute fuel conservation operation at a low fuel cell system load. The controller gives a current draw instruction to electric power controller. In the fuel conservation operation, electric power controller draws a current larger than zero from fuel cell stack, and keeps the total charge drawn per unit time constant or substantially constant.
Abstract:
Policy information stores policy setting information and identification information of a policy in correlation with each other, the policy setting information correlating setting content of the policy with each data type information indicating whether data for which the policy is set is original data or derived data. A data information storage stores identification information of data for which a policy is set in correlation with the data and identification information of the policy attached to the data, and information for identifying that the data is the derived data. A searching unit identifies, in response to a searching request, identification information of a policy correlated to the data whose identification information is designated in the searching request, identifies whether target data of the searching request is the original data or the derived data.
Abstract:
Disclosed is a single flux quantum circuit that uses a flux quantum as an information carrier, which generates a SFQ clock signal with little clock jitter and supplies the SFQ clock signal to a SFQ function circuit of the SFQ circuit. A SFQ function circuit is configured to include a current steering type single flux quantum circuit that is capable of concurrently achieving both a conversion function of converting a current signal into a SFQ signal and a comparator function of outputting a SFQ data signal in response to the amount of a to-be-compared current. At the same time, a SFQ clock signal oscillation circuit for generating a SFQ clock signal in response to the amount of DC voltage is formed.
Abstract:
There is provided a device for protecting a digital content. The device includes a digital content processing section that causes a digital content to be protected using security information; and an encrypting section that encrypts the security information, using a key acquired from a Digital Right Management system of an electronic ticket system.
Abstract:
A fuel cell separator which is low in cost and high in hydrophilicity and electrical conductivity and a process for producing the fuel cell separator. The fuel cell separator is characterized in that by using a starting material for a fuel cell separator subjected to a hydrophilization treatment in a hydrophilizing gas, the surface contact angle of the fuel cell separator as measured by a sessile drop method using water is in a range of 3 to 70°; and the process of the present invention for producing a fuel cell separator is characterized in that a starting material for the fuel cell separator after molding or machining is subjected to a hydrophilization treatment in a hydrophilizing gas and thereby the surface contact angle of the fuel cell separator as measured by a sessile drop method using water is controlled at 3 to 70°.
Abstract:
A separator of a proton exchange fuel cell. In a cell stack of a proton exchange fuel cell, the cell stack composed by laminating a plurality of unit cells and a plurality of separators, each of the unit cells composed of an anode electrode, a cathode electrode and a solid polymer electrolytic membrane arranged between the anode and cathode electrodes, each of the separators arranged between the unit cells, respectively, the separator of the proton exchange fuel cell includes a separator substrate and a multi-coating layer formed on the separator substrate. The multi-coating layer includes at least two layers of a low electric resistance layer, a corrosion resistance layer and a peeling resistance layer.
Abstract:
An arrangement and process are provided for regulating the humidification or dew point of inlet air supplied (124, 224, 324, 424) to combustion-supported reaction means (20, 120) of a fuel processing system in a fuel cell power plant (110, 210, 310, 410). In addition to flowing exhaust gas(es) (28, 128) in heat and energy exchange relation with inlet air through a primary energy recovery device (ERD) (30) of the gas/gas type, a supplemental ERD (50) of the gas/liquid (water) type uses water temperature to passively condense moisture from a gas stream, either of inlet air or of exhaust gas, to regulate the dew point of the air supplied to the combustion-supported reaction means (20, 120). The supplemental ERD (50) may have a gas channel (134) and a water channel (132) separated by an enthalpy exchange barrier (136), and may be relatively upstream or downstream of the primary ERD (30) relative to the flow of inlet air through the latter to regulate dew point indirectly or directly, respectively.
Abstract:
An air cooling device includes at least one cooling unit which includes an oblique honeycomb having front, rear, upper, and lower openings and disposed so that air to be cooled is introduced into the front opening and cooled air is discharged from the rear opening, a cooling water supply means which supplies cooling water to the upper opening of the oblique honeycomb, and a water receiving section which receives discharge water discharged from the lower opening of the oblique honeycomb, and a blower means which introduces air to be cooled into the front opening of the oblique honeycomb and allows cooled air to be discharged from the rear opening of the oblique honeycomb, wherein the height of one oblique honeycomb in the cooling unit is 200 to 800 mm. The air cooling device has high thermal efficiency, a small liquid-gas ratio, and a small pressure drop, and is capable of saving space and energy.