Abstract:
The present invention discloses an isolated power converter circuit and a control method thereof. The isolated power converter circuit includes: a transformer circuit, a power switch circuit, an opto-coupler circuit, and a control circuit. The transformer circuit includes a first winding and a second winding. The power switch circuit is coupled to the transformer circuit to control it according to a driving signal. The opto-coupler circuit generates a feedback signal. The control circuit is coupled to the power switch circuit and the opto-coupler circuit, for generating the driving signal according to the feedback signal. The control circuit includes a distinguishing circuit for distinguishing a status of the feedback signal.
Abstract:
By monitoring the temperature of an LED and the temperature of a controller chip for the LED, a thermal foldback control is employed to gradually decrease the driving current of the LED before the LED or the controller chip is over heated, so as to prevent an over temperature protection from being triggered to shutdown the controller chip to cause the LED to undesirably flicker.
Abstract:
The present invention discloses an analog photovoltaic power circuit, comprising: a photovoltaic device group for receiving photo energy to generate an input voltage; a power stage circuit for converting the input voltage to an output voltage; an optimum voltage estimation circuit for receiving a predetermined voltage and estimating an optimum voltage according to a direction of variation of the input voltage and a direction of variation of the power generated by the photovoltaic device group; and an analog comparison and control circuit for comparing the optimum voltage with the input voltage, to thereby control the operation of the power stage circuit.
Abstract:
The present invention discloses an analog photovoltaic power circuit, comprising: a photovoltaic device group for receiving photo energy to generate an input voltage; a power stage circuit for converting the input voltage to an output voltage; an optimum voltage estimation circuit for receiving a predetermined voltage and estimating an optimum voltage according to a direction of variation of the input voltage and a direction of variation of the power generated by the photovoltaic device group; and an analog comparison and control circuit for comparing the optimum voltage with the input voltage, to thereby control the operation of the power stage circuit.
Abstract:
The present invention discloses a multi-color light emitting device circuit, which includes: multiple light emitting device strings of different colors, a timing control circuit, a power regulator circuit, and preferably a dark feedback circuit. Each light emitting device string has multiple light emitting devices coupled in series. The number of the light emitting devices of each light emitting device string is determined by an operational voltage of the light emitting device, wherein at least two of the light emitting device strings have different numbers of the light emitting devices, such that voltage drops of the two light emitting device strings are closer to each other than in a case wherein the two light emitting device strings have the same number of the light emitting devices, and the response time of the light emitting device strings are increased.
Abstract:
The present invention discloses a light emitting device power supply circuit, a light emitting device driver circuit and a control method thereof. The light emitting device driver circuit is coupled to a tri-electrode AC switch (TRIAC) dimmer circuit, and it controls the brightness of a light emitting device circuit according a rectified dimming signal. The light emitting device driver circuit includes a power stage circuit and a light emitting device control circuit. The light emitting device control circuit generates a switch control signal. The power stage circuit operates at least one power switch thereof according to the switch control signal to generate a latching current for firing the TRIAC dimmer circuit, and the latching current is inputted to the light emitting device circuit.
Abstract:
The present invention discloses a driver circuit and a method for driving a load circuit. The driver circuit includes: a primary side circuit receiving rectified AC power; a transformer coupled to the primary side circuit and converting a primary voltage to a secondary voltage which is supplied to a load circuit; and a secondary side circuit coupled to the transformer, the secondary side circuit detecting current flowing through the load circuit and feedback controlling the primary side circuit accordingly.
Abstract:
The present invention discloses a synchronous driver circuit, comprising: an inductor having one end coupled to an input voltage; a first power transistor having one end coupled to the other end of the inductor and another end supplying an output voltage; a second power transistor having one end coupled to the other end of the inductor and another end coupled to ground; a control circuit for controlling the operation of the first and second power transistors; a gate driver coupled to the control circuit and having an output controlling the gate of the first power transistor; and a bootstrap capacitor having one end coupled to a voltage node and the other end coupled to the other end of the inductor, the voltage across the bootstrap capacitor being provided as the operational voltage of the gate driver.
Abstract:
The present invention discloses an AC power line controlled light emitting device dimming circuit and a method thereof. The AC power line controlled light emitting device dimming circuit includes: a light emitting device driver circuit for controlling current through a light emitting device, wherein the light emitting device is current-controlled; and a level adjustment circuit for detecting power-OFF of an AC power switch and generating a corresponding level adjustment signal which is transmitted to the light emitting device driver circuit to control the current through the light emitting device accordingly.
Abstract:
The present invention discloses a tail-less LED control circuit, which includes: a power supply stage having an output terminal which provides electrical power to an LED circuit; an output capacitor coupled to the output terminal; an LED driver circuit coupled to the power supply stage for controlling the power supply stage to provide the electrical power to the LED circuit, the LED driver circuit receiving a PWM dimming signal for adjusting brightness of the LED circuit; and a MOSFET switch coupled to the output capacitor in series, the MOSFET switch switching synchronously with the PWM dimming signal to alleviate LED afterglow, wherein the MOSFET switch includes a body diode having an anode-cathode direction against the discharge direction of the output capacitor.