Abstract:
Power converters for use in energy systems are included. For instance, an energy system can include an input power source configured to provide a low voltage direct current power. The energy system can include a power converter configured to convert the low voltage direct current power provided by the input power source to a medium voltage multiphase alternating current output power suitable for provision to an alternating current power system. The power converter can include a plurality conversion modules. Each conversion module includes a plurality of bridge circuits. Each bridge circuit includes a plurality of silicon carbide switching devices coupled in series. Each conversion module is configured to provide a single phase of the medium voltage multiphase alternating current output power on a line bus of the energy system.
Abstract:
A wind generation system includes a wind turbine for generating mechanical power, a doubly-fed induction generator for converting the mechanical power to electrical power, a converter for converting the electrical power to a desired electrical power for supplying to a power grid, and a transformer through which a stator of the generator is coupled to the power grid. When a measured rotation speed feedback from the rotor of the generator is lower than an original cut-in rotation speed of the rotor, a cut-in rotation speed of the rotor is lowered by determining a DC link voltage margin of the converter, determining a DC link voltage setpoint of the converter based on the determined DC link voltage margin; and controlling the converter based on the determined DC link voltage setpoint; and/or by increasing a turn ratio of the transformer to reduce a grid voltage from the power grid.
Abstract:
Systems and methods for operating a power converter with a plurality of inverter blocks with silicon carbide MOSFETs are provided. A DC to AC converter can include a plurality of inverter blocks. Each inverter block can include a plurality of switching devices. A control method can include identifying one of a plurality of switching patterns for operation of the inverter block for each inverter block. Each switching pattern can include a plurality of switching commands. The control method can further include controlling each inverter block based on the identified switching pattern for the inverter block. The control method can further include rotating the switching patterns among the plurality of inverter blocks.
Abstract:
Systems and methods for operating a power converter with a plurality of inverter blocks with silicon carbide MOSFETs are provided. A DC to AC converter can include a plurality of inverter blocks. Each inverter block can include a plurality of switching devices. A control method can include identifying one of a plurality of switching patterns for operation of the inverter block for each inverter block. Each switching pattern can include a plurality of switching commands. The control method can further include controlling each inverter block based on the identified switching pattern for the inverter block. The control method can further include rotating the switching patterns among the plurality of inverter blocks.
Abstract:
Systems and methods for protecting the redundancy of inverter blocks are provided. In one example implementation, a system can include a plurality of inverter blocks. Each inverter block can include a first conversion entity configured to convert DC power to AC power, a second conversion entity configured to convert AC power to DC power, and a third conversion entity configured to convert DC power to AC power. An isolation transformer can be coupled between the first conversion entity and the second conversion entity. The system includes an inverter block switching element coupled to an output of each inverter block. A protection element is disposed in each inverter block. The system includes one or more control devices configured to isolate at least one of the plurality of inverter blocks based at least in part on a status of the protection element disposed in the inverter block.
Abstract:
Systems and methods for grounding power generation systems with silicon carbide MOSFET power converters are provided. A power generation system can include a power generator comprising a multiphase rotor configured to generate multiphase alternating current power at a first voltage and a power converter comprising one or more silicon carbide MOSFETs and an isolation transformer. The power converter can be configured to convert the multiphase alternating current power from the power generator at the first voltage to multiphase alternating current power at a second voltage. The power generation system can be electrically grounded to shunt a leakage current associated with the isolation transformer of the power converter to a ground.
Abstract:
Power converters for use in wind turbine systems are included. For instance, a wind turbine system can include a full power generator having a stator and a rotor. The generator is configured to provide a low voltage alternating current power on a stator bus of the wind turbine system. The wind turbine system includes a power converter configured to convert the low voltage alternating current power provided on the stator bus to a medium voltage multiphase alternating current output power suitable for provision to the electrical grid. The power converter includes a plurality of conversion modules, each conversion module comprising a plurality of bridge circuits. Each bridge circuit includes a plurality of silicon carbide switching devices coupled in series. Each conversion module is configured to provide a single phase of the medium voltage multiphase alternating current output power on a line bus of the wind turbine system.
Abstract:
The present disclosure is directed to a protection system for a wind turbine power system connected to a power grid. The protection system includes a main brake circuit having at least one brake resistive element and at least one brake switch element, a battery system, and a controller. The brake resistive element is coupled to at least one of a DC link of a power converter of the wind turbine power system, windings of a rotor of the generator, or windings of a stator of a generator of the wind turbine power system via the brake switch element. The battery system is coupled to the generator via a battery switch element. In addition, the controller is configured to disconnect the power converter and the generator from the power grid and connect at least one of the main brake circuit or the battery system to the generator in response to detecting an electromagnetic (EM) torque loss event so as to generate an EM torque.
Abstract:
Systems and methods associated with example power converter systems are disclosed. For instance, a power converter system can include a power converter couplable to an input power source and configured to generate an output power substantially at a grid frequency. The power converter can include one or more inverter bridge circuits, each associated with an output phase of the power converter. Each inverter bridge circuit can include one or more first switching modules having a pair of switching elements coupled in series with one another, and an output coupled between the pair of switching elements. At least one switching element of each first switching module includes a reverse blocking transistor. The power converter further includes one or more input bridge circuits having a plurality of second switching modules coupled in parallel, each second switching module comprising a pair of silicon carbide transistors.
Abstract:
Systems and methods for controlling the state of charge of an energy storage system used in conjunction with a renewable energy source or other power generation system are provided. More particularly, a future output requirement of the energy storage system can be predicted based at least in part on data indicative of anticipated conditions, such as weather conditions, wake conditions, or other suitable conditions. A control system can adjust a state of charge setpoint from a nominal setpoint (e.g. 50%) to an adjusted setpoint based at least in part on the future output requirement. In this way, the energy storage system can better accommodate the output requirements of the energy storage system during varying weather conditions.