Abstract:
Method and apparatus for a GPS device that uses at least one cellular acquisition signal is described. More particularly, a GPS device is configured to receive at least one cellular acquisition signal for obtaining benefits associated with AGPS with only a small subset of AGPS circuitry to interact with a cell phone network. This facilitates use of GPS devices without subscription to a cell phone service provider, thus avoiding cellular subscription fees.
Abstract:
Aspects of a method and system for dynamic adjustment of power, antenna direction and frequencies in a femtocell network are provided. In this regard, a communication system may comprise a plurality of femtocells, one or more base stations, and a femtocell management entity that coordinates operation of the plurality of femtocells. One or more parameters may be communicated from one of the plurality of femtocells and/or one or more base stations to the femtocell management entity. The femtocell management entity may be enabled to utilize the one or more parameters to determine configuration information for one of the plurality of femtocells and/or for one or more remaining ones of the plurality of femtocells. One of the plurality of femtocells may be enabled to receive the determined configuration information from the femtocell management entity. One of the plurality of femtocells may be configured utilizing the received determined configuration information.
Abstract:
Aspects of a method and system for supporting a plurality of providers via a single femtocell are provided. In this regard, a femtocell may determine characteristics of one or more VLANs to which it is virtually communicatively coupled via a non-cellular connection and via a cellular connection. Based on the determined characteristics of the one or more VLANs, a cellular transmitter and/or receiver of the femtocell may be controlled to transmit and/or receive packets belonging to the one or more VLANs via the non-cellular connection and/or via the cellular connection. The characteristics of the one or more VLANs may comprise one or more of: cellular standards utilized by the one or more VLANs, cellular frequencies utilized in the one or more VLANs, access technologies utilized by the one or more VLANs, and a duplexing method utilized by the one or more VLANs.
Abstract:
A method for adjusting a measurement cycle in a satellite signal receiver is described. The method includes adjusting a measurement cycle in a satellite signal receiver by computing a position state comprising at least one of a velocity and a heading of the satellite signal receiver, detecting a change in the position state, and automatically adjusting a frequency of said measurement cycle in response to the change in the position state.
Abstract:
Aspects of a method and system for maintaining a GNSS receiver in a hot-start state are provided. A GNSS receiver in a standby mode may transition from a sleep state to a wakeup state to acquire ephemeris from, for example, GPS signals, GALILEO signals, and/or GLONASS signals. The acquired ephemeris may be stored and utilized for the GNSS receiver to generate a navigation solution in a normal mode. The GNSS receiver may transition from the normal mode to the sleep state or the wakeup state in standby mode. A sleep period and a wakeup period for the full sleep-wakeup cycle in the standby mode may be predetermined or dynamically adjusted based on required QoS, quality of satellite signals, and/or user inputs. The sleep period and the wakeup period may be selected in a way to ensure a valid and complete ephemeris to be acquired.
Abstract:
A method and apparatus for providing assistance data for satellite positioning system receivers utilizing a secure user plane location (SUPL) service. In one embodiment, the assistance data is supplied by a global secure user plane location center that contains global assistance data.
Abstract:
A multi-function appliance for use in a satellite navigation data distribution system is described. A computer includes an input/output interface and a memory the computer is configured with a plurality of modules. The plurality of modules includes a satellite signal receiver, a packetizer, a network interface, a concentrator, and a decoder. The satellite signal receiver is configured to obtain satellite navigation data from satellite signals. The packetizer is configured to packetize satellite navigation data to produce a reference packet stream. The network interface is configured to transmit packet streams towards a network. The concentrator is configured to remove duplicate packets within reference packet streams to generate a combined packet stream. The decoder is configured to decode satellite data from packet streams. In this manner, the computer may be configured to perform a reference station function, a hub function, or a server function in the satellite navigation data distribution network.
Abstract:
Method and apparatus for processing satellite signals in an SPS receiver is described. In one example, the satellite signals are correlated against pseudorandom reference codes to produce correlation results. A determination is made whether the SPS receiver is in a motion condition or a stationary condition. The correlation results are coherently integrated in accordance with a coherent integration period. The coherent integration period is a value that depends upon the motion condition of the SPS receiver.
Abstract:
Method and apparatus for processing location service messages in a satellite position location system is described. In one example, a mobile receiver includes a satellite signal receiver, wireless circuitry, and at least one module. The satellite signal receiver is configured to receive satellite positioning system signals, such as Global Positioning System (GPS) signals. The wireless circuitry is configured to communicate location service messages between the mobile receiver and a server through a cellular communication network. The location service messages may include any type of data related to A-GPS operation, such as assistance data, position data, request and response data, and the like. The at least one module is configured to provide a user-plane interface and a control-plane interface between the satellite signal receiver and the wireless transceiver. The at least one module is capable of processing location service messages communicated using either the control-plane signaling or user-plane signaling mechanisms.
Abstract:
Aspects of a method and system for generating temporary ephemeris may include determining one or more positions of a satellite receiver based on a plurality of satellite signals received from a plurality of satellites for which complete ephemeris data has been received at the satellite receiver. Temporary ephemeris data may be generated from the determined one or more positions of the satellite receiver and one or more satellite signals from one or more satellites with incomplete ephemeris data. One or more estimated positions of the satellite receiver may be determined based on the generated temporary ephemeris and a second plurality of satellite signals, wherein at least one of the second plurality of satellite signals is associated with the one or more satellites with incomplete ephemeris data. The temporary ephemeris data may be generated by generating a translated satellite position and a rate of change of an associated receiver clock corrected pseudorange.