Abstract:
If the mobile station (101) locates a peer it will request network metadata and may obtain location related services or service lists. The mobile station (101) negotiates with one of more peers (103) to share the work load of background scanning for network services. After successful negotiation, any peers in the “discovery net” will report or advertise to each other of any newly discovered networks, or networks to which connectivity has been lost. Since the various mobile stations may, when powered on, scan periodically for network changes, the metadata stored on the mobile station (101) will be dynamic and will change periodically upon travels and/or encounters with additional peers. Because the peers (103) may also possess location information, the mobile station (101) may additionally adjust its scan to prioritize services advertised by those members of peers (103) that are located most proximate to the mobile station (101).
Abstract:
A method (200) in a CDMA terminal device for acquiring a system identified in an enhanced preferred roaming list (enhanced PRL), with at least one entry containing a mobile country code, includes the steps of obtaining (210) system identifiers from SYNCH channels on a scan list, determining (220) if the system identifiers match entries on the enhanced PRL, and inserting (226) channel information items on a first list if the system identifiers do not match entries on the enhanced PRL. If all channels on the scan list have been scanned without any system identifiers matching entries on the enhanced PRL, the method obtains (246) mobile country codes using channel information items from the first list, determines (250) if the mobile country codes match entries on the enhanced PRL, and camps (283) on a system if its mobile country code matches an entry on the enhanced PRL.
Abstract:
A method and communication device (102) provide multimode communication with multiple autonomous communication systems including a first communication system (104) and a second communication system (106). Resources are dedicated to communication on the respective communication systems. To minimize product cost, resources are shared wherever possible between communication on respective modes. A system supervisor (304) prioritizes, schedules and controls communication between the communication device and the autonomous communication systems.
Abstract:
A portable communication device (102) includes a housing (105), a first display area (130), and a second display area (132). The first display area (130) is outwardly directed from a side (122) of the housing (105), and the second display area (132) is outwardly directed from a front (120) of the housing (105). The housing (105) may include a housing portion (114) movable to an open position and a closed position, where the second display area (132) is covered by the housing portion (114) when positioned in one of the first and the second positions.
Abstract:
A portable radio communication device (102) includes a housing (302), and a transmitter (906) and control circuitry (902) disposed in the housing (302). The housing (302) is configured to carry a first battery source (112) and to optionally simultaneously carry a second battery source (114). The control circuitry (902) configures the transmitter (906) to transmit in accordance with a first set of power levels when the second battery source (114) is available, and in accordance with a second set of power levels when the second battery source (114) is unavailable. The first set of power levels includes at least one power level greater than any of the second set of power levels.
Abstract:
An electronic device, such as a radiotelephone, is connectable to a variable-level power source. The electronic device includes a rechargeable power source which is repowered responsive to application of operative power generated by the variable-level power source. The electronic device provides a constant charge current regulator for converting operative power of a constant voltage into operative power of a constant current to be applied to the rechargeable power source to recharge the rechargeable power source. The constant charge current regulator is made up of a series connected diode and resistor pair. According to a further aspect of the invention, when the rechargeable power source becomes fully recharged, application of the operative power can be reduced.
Abstract:
A portable electronic device includes a processor and a detection mechanism operable to detect one or more characteristics relating to how a user handles the electronic device. The processor is operably coupled to the detection mechanism and operable in accordance with stored operating instructions to: determine, based on the detected characteristics, which limb of the user possesses the portable electronic device; and control at least one function of the portable electronic device taking into account which limb of the user possesses the electronic device (e.g., which limb of the user is holding or secured to the electronic device). According to one embodiment, the processor may further determine a reference position for the portable electronic device (e.g., a position of the device at rest) and compare one or more of the detected characteristics to the reference position to determine which limb of the user possesses the electronic device.
Abstract:
A media collection system (102) uses media collection devices (107) to record media in the vicinity of a mobile device (104). A method (300) for collecting media associated with a user of a mobile device (104) includes the mobile device detecting (304) a broadcast signal from a communication node of the media collection system (102) at a radio interface of the mobile device. Then the mobile device requests (308) a media collection service of the media collection system. In response, the mobile device receives (314) an access identifier from the media collection system. The access identifier can be used to access media collected by the media collection system. The mobile device can then cease a self-collection activity while in the vicinity of the media collection system.
Abstract:
Systems and methods are provided for managing the display of content on an electronic rollable device (600). According to certain aspects, the systems and methods facilitate communications and applications of a rollable device with a display screen interface. The device detects an interaction with the display screen interface by a user (605), such as the user grasping the device. From the interaction, the device identifies a position of the user's hand and, based on the position, a set of configuration settings, and/or other variables, determines a display region on the touchscreen to display a graphic (635) associated with the communications and applications. The device displays the graphic within the display region and receives and processes input from the user.
Abstract:
Systems and methods are provided for managing the display of content on a display screen (110) of an electronic device (100). According to certain aspects, a sensor (119) or a set of a plurality of sensors (225) generate image data corresponding to a user viewing the device. Further, in one embodiment, a film (111) generates electrical signals corresponding to a shape or configuration of the display screen. The electronic device can calculate a distortion parameter based on the electrical signals. In another embodiment, an additional set of the plurality of sensors generates image data, from which the electronic device can calculate the distortion parameter. The electronic device generates processed image data based on the viewing position and the distortion parameter, and displays the processed image data on the display screen in such a way that the content appears oriented and proportioned to the user viewing the display screen.