Abstract:
Systems and methods are disclosed for determining tool offset data for a tool attached to a robot at an attachment point. In an embodiment, a method includes controlling the robot to contact a reference object with the tool. The reference object is a rigid object with a known location. A force feedback sensor of the robot may indicates when the tool has contacted the reference object. Once contact is made, data indicating robot position during tool contact is received. Additionally, the robot may temporarily stops movement of the tool to prevent damage to the tool or the reference object. Next, tool offset data s determined based on the position of the reference object relative to the robot and the received robot position data. The tool offset data describes the distance between at least one point on the tool and the attachment point.
Abstract:
Example systems and methods are disclosed for determining tool offset data for a tool attached to a robot at an attachment point. The method may include controlling the robot to contact a reference object with the tool. The reference object may be a rigid object with a known location. A force feedback sensor of the robot may indicate when the tool has contacted the reference object. Once contact is made, data indicating robot position during tool contact may be received. Additionally, the robot may temporarily stop movement of the tool to prevent damage to the tool or the reference object. Next, tool offset data may be determined based on the position of the reference object relative to the robot and the received robot position data. The tool offset data may describe the distance between at least one point on the tool and the attachment point.
Abstract:
Robotic processor embodiments determine via graphical image analysis physical attributes of an engagement area of a work-piece that a specified tool physically engages to execute a specific action. The processors identify a model set plurality of alternate substitute tools that are each available within a physical environment of the engagement area and have a body portion with physical dimensions that conform to physical dimensions of the work-piece engagement area, and thereby select a substitute tool that has a body portion that best conforms to the physical dimensions of the work-piece engagement area and meets constraints for substitute tool selection for executing the specific action.
Abstract:
A numerical controller retrieves only a tool change command in an NC program and controls an automatic tool changer to execute tool change based on the retrieved tool change command. The numerical controller controls a camera to capture an image of a tool every time the tool change command is executed, and analyzes the image captured by the camera to calculate a shape and a size of the tool. The calculated tool shape and size are collated with a shape and a size in tool management data stored in the numerical controller, and the result of the collation is displayed on a screen of a display device so that an operator can be informed of it.
Abstract:
A tool mounted on the wrist end of a robot is placed in a predetermined photographing position, and the front and side faces of the tool are photographed by cameras to obtain three-dimensional shape data of the tool. The extent of deformation of the tool is detected by comparing the obtained shape data and reference shape data, and a programmed movement path for the robot is corrected depending on the extent of deformation.
Abstract:
A tool (2) mounted on the wrist end of a robot (1) is placed in a predetermined photographing position (P1), and the front and side faces of the tool (2) are photographed by cameras (41, 42) to obtain three-dimensional shape data of the tool (2). The extent of deformation of the tool (2) is detected by comparing the obtained shape data and reference shape data, and a programmed movement path for the robot is corrected depending on the extent of deformation.