Abstract:
An LED-filament includes first and second connectors for receiving a variable power; an at least partially light-transmissive substrate; a first LED array of serially connected first LED chips on a front face of the substrate; a second LED array of serially connected second LED chips on the front face of the substrate; a first photoluminescence layer covering the first LED array for generating a first color temperature; a second photoluminescence layer covering the second LED array for generating a second different color temperature; and at least one resistor serially connected to one of the first LED chips, where the first LED array and second LED array are connected in parallel to the first and second connectors, and where current flowing through the first LED and second LED arrays depends on the power applied to the first and second connectors and where the final color temperature of light generated by the LED-filament depends on the power applied to the first and second connectors.
Abstract:
A lighting device according an aspect of the current disclosure includes a sensor that emits and receives signals to detect object, and a light source module disposed on the sensor, wherein the sensor transmits and receives the signals through the light source module, wherein the light source module includes a substrate, a light source disposed on the substrate, and a resin layer disposed on the light source, and wherein a distance between the sensor and the light source module is about 60 mm or more.
Abstract:
A lighting device according to an embodiment includes a sensor, a substrate disposed on the sensor and including an electrode pattern, a light source disposed on the substrate and electrically connected to the electrode pattern, a resin layer disposed on the substrate, and a reflective layer disposed between the substrate and the resin layer, and the substrate may include a first region overlapping the sensor in a first direction perpendicular to an upper surface of the substrate, a second region surrounding the first region, the light source may be disposed on the second region, the plurality of reflective pattern groups may be disposed on the first region, and the sensor may not overlap the light source and the electrode pattern in the first direction.
Abstract:
A lighting device has a power interface and a control circuit in communication with a program and the LEDs to simulate a flame. The program determines a first group of LED control integers to simulate a perpetual middle with a perpetual middle center and a perpetual middle range within which one or more of the LEDs are to be at least partially actuated. At least one LED is actuated based on the first group of LED control integers. A first target for simulating movement of the perpetual middle center toward the first target and a first acceleration value is defined. The program determines a second group of LED control integers based on the first target and the first acceleration value such that the perpetual middle center becomes closer to the first target. One or more of the LEDs is actuated based on the second group of LED control integers.
Abstract:
Runway end identifier light system having a housing with an illumination window, a substrate having a mounting surface disposed within the housing, and a first light-emitting diode (“LED”) disposed on the mounting surface of the substrate. The LED may be configured such that light emitted by the LED is visible through the illumination window of the housing. The LED may have a primary illumination axis which is at an angle greater than 0° with respect to a perpendicular axis of the substrate. Systems with multiple mounting surfaces and multiple LEDs having various primary illumination axes are disclosed.
Abstract:
A lighting system for illuminating a target area, including a substantially planar mounting surfaced disposed adjacent and substantially parallel to the plane of the target area, and a first plurality of collimated light sources mounted to the mounting surface and disposed to emit in a first orientation at a first predetermined angle from the mounting surface; wherein the plurality of light sources are arranged for overlapping illumination of a region of the target area, and the region is illuminated with substantially uniform intensity at a substantially common angle of incidence.
Abstract:
A lamp is disclosed with a circuit board that is manufactured from a flexible material. The lamp may find particular use in a surgical or diagnostic environment. The flexible material allows the orientation of lamp elements to allow for a custom light beam. The flexible circuit board allows for interconnection between multiple lamp elements at different angles and rotation without having individual rigid circuit boards. Furthermore, the flexible circuit board may be mounted to a back panel, wherein the back panel is configured to act as a heat sink to dissipate heat generated, in operation, by the lamp element.
Abstract:
A theater lighting apparatus including a plurality of light emitting modules or light emitting devices contained within a lamp housing each having a remotely controllable pan and tilt axis. The theater lighting apparatus is also capable of remotely positioning the lamp housing containing the plurality of light emitting modules. The theater lighting apparatus may include a base, and the lamp housing. The plurality of light emitting devices may include a first light emitting device which is individually remotely positionable to project a first light in a first direction, a second light emitting device which is individually remotely positionable to project a second light in a second direction, and a third light emitting device which is individually remotely positionable to project a third light in a third direction. The first direction, the second direction, and the third direction may be different from each other.
Abstract:
A light source apparatus includes a plurality of light emission clusters arranged in a matrix pattern, wherein the light emission cluster has four sub light emission clusters of two rows and two columns, the sub light emission cluster has a plurality of light sources, the plurality of light sources having a first light source that emits light of a first color and a second light source that emits light of a second color, a difference in brightness of the second color being more easily perceived than a difference in brightness of the first color, and an interval between a center of the light emission cluster and the second light source of the light emission cluster is greater than or equal to an interval between the center of the light emission cluster and the first light source of the light emission cluster.
Abstract:
A headset for virtual reality applications includes an array of light emitting diodes (LEDs) emitting light captured by a camera included in a virtual reality system, allowing the virtual reality system to detect the position and orientation of the headset in three-dimensional space. To manufacture the headset, a flexible strip including a circuit having the LEDs is molded into an outer shell of the headset using a casting material that is transmissible to wavelengths of light transmitted by the LEDs. An interior surface of the outer shell of the headset is within a specified distance of the LEDs. The outer shell may also include fabric that is also molded into the outer shell in the same or in a similar process.