Abstract:
A content server provides content to a first network device during a data synchronization between the two devices. A middleware filter selectively filters content provided by the content server such that selected content is provided to the first network device. The middleware filter is included within a second network device coupled between the content server and the first network device. The second network device acts as a proxy for the first network device to receive the content provided by the content server. The content is provided from the content server according to a subscription service between the content server and the first network device. The first network device is preferably a personal digital assistant (PDA) and the second network device is preferably a personal computer. Alternatively, the content server is coupled to the first network device, without the second network device coupled in between. In the alternative case, the middleware filter is included within the content server, and the content is selectively provided from the middleware filter, on the content server, to the first network device.
Abstract:
Extensions to a communications protocol manage the exchange of data content and related metadata according to a hierarchical data content structure. The communications protocol is the ICE protocol, and the extensions include ICE DTD extensions. Data content is preferably offered according to a subscription service provided by a first network device. The first network device is preferably a content server. The data content is organized, and thereby distributed, according to a hierarchical data content structure defined by the ICE DTD extensions. The hierarchical data content structure provides a means for organizing the data content, preferably by subject-matter. The hierarchical data content structure includes a plurality of channels, and each channel is segmented into one or more content sub-channels. Each individual data content item is associated with at least one of the content sub-channels and corresponding channel. The individual data content item is associated with a particular channel according to the subject matter of the individual data content item and the subject-matter of the channel. In this manner, a content sub-channel with a specific subject-matter is configured and an individual data content item corresponding to the specific subject-matter is associated with the content sub-channel.
Abstract:
A version based content distribution and synchronization system configured for content distribution from a syndicator to a subscriber is disclosed. The preferred system comprises version based content, a syndicator, subscriber content, and a subscriber. Preferably, the content comprises a version number and the subscriber content comprises a subscriber content version number. The version based content preferably comprises digital media. The version based content is preferably stored and organized on the syndicator in a tree like structure. The syndicator preferably compares the version number of the version based content with the subscriber content version number of the subscriber content. If the version number is greater than the subscriber content version number, the version based content is transferred from the syndicator to the subscriber. Preferably, the version based content is distributed and synchronized via an internet protocol method.
Abstract:
Extensions to a communications protocol manage the exchange of data content and related metadata according to a hierarchical data content structure. The communications protocol is the ICE protocol, and the extensions include ICE DTD extensions. Data content is preferably offered according to a subscription service provided by a first network device. The first network device is preferably a content server. The data content is organized, and thereby distributed, according to a hierarchical data content structure defined by the ICE DTD extensions. The hierarchical data content structure provides a means for organizing the data content, preferably by subject-matter. The hierarchical data content structure includes a plurality of channels, and each channel is segmented into one or more content sub-channels. Each individual data content item is associated with at least one of the content sub-channels and corresponding channel. The individual data content item is associated with a particular channel according to the subject matter of the individual data content item and the subject-matter of the channel. In this manner, a content sub-channel with a specific subject-matter is configured and an individual data content item corresponding to the specific subject-matter is associated with the content sub-channel.
Abstract:
A content server provides content to a first network device during a data synchronization between the two devices. A middleware filter selectively filters content provided by the content server such that selected content is provided to the first network device. The middleware filter is included within a second network device coupled between the content server and the first network device. The second network device acts as a proxy for the first network device to receive the content provided by the content server. The content is provided from the content server according to a subscription service between the content server and the first network device. The first network device is preferably a personal digital assistant (PDA) and the second network device is preferably a personal computer. Alternatively, the content server is coupled to the first network device, without the second network device coupled in between. In the alternative case, the middleware filter is included within the content server, and the content is selectively provided from the middleware filter, on the content server, to the first network device.
Abstract:
A content server provides content to a first network device during a data synchronization between the two devices. A middleware filter selectively filters content provided by the content server such that selected content is provided to the first network device. The middleware filter is included within a second network device coupled between the content server and the first network device. The second network device acts as a proxy for the first network device to receive the content provided by the content server. The content is provided from the content server according to a subscription service between the content server and the first network device. The first network device is preferably a personal digital assistant (PDA) and the second network device is preferably a personal computer. Alternatively, the content server is coupled to the first network device, without the second network device coupled in between. In the alternative case, the middleware filter is included within the content server, and the content is selectively provided from the middleware filter, on the content server, to the first network device.
Abstract:
A content server provides content to a first network device during a data synchronization between the two devices. A middleware filter selectively filters content provided by the content server such that selected content is provided to the first network device. The middleware filter is included within a second network device coupled between the content server and the first network device. The second network device acts as a proxy for the first network device to receive the content provided by the content server. The content is provided from the content server according to a subscription service between the content server and the first network device. The first network device is preferably a personal digital assistant (PDA) and the second network device is preferably a personal computer. Alternatively, the content server is coupled to the first network device, without the second network device coupled in between. In the alternative case, the middleware filter is included within the content server, and the content is selectively provided from the middleware filter, on the content server, to the first network device.
Abstract:
The present invention discloses a nuclide identification device, comprising: an upper casing portion; a lower casing portion, detachably combined with the upper casing portion to form a cavity; and a key circuit portion for performing nuclide identification, housed in the cavity and positioned between the upper casing portion and the lower casing portion, wherein a gap between the upper casing portion and the lower casing portion is sealed by a first waterproof structure. Compared with the prior art, the present nuclide identification device is capable of using in environment requiring to be waterproof and dustproof, so as to make a detection on the radioactive material in the environment.
Abstract:
The present invention is a system and method that facilitates the reduction of presentation glitches in a digital video system. The present invention is a system and method that automatically determines if digital video (DV) data is missing from a stream of DV information and replaces or patches missing DV data with appropriate information to reduce the appearance of interruptions in the video (e.g., glitches in presentations). A communication packet carrying application data is received by an application data patching computer system. In one embodiment of the present invention, an IEEE standard 1394 compliant isochronous packet carrying digital video information is received. The application data (e.g., DV information) is separated from other communication packet protocol data (e.g., IEEE standard 1394 compliant header information). The received application data is analyzed to determine if it conforms to configuration constraints of predetermined application data format requirements. In one exemplary implementation, the initial information included in the application data section of the communication packet is analyzed to determine if it appropriately (e.g., sequentially) follows the information in previously received communication packet in accordance with predefined configuration definitions. If the information does not appropriately (e.g., sequentially) follow the information in previously received communication packet, a data patch is provided for lost or missing application data.
Abstract:
The present invention is a system and method that facilitates the reduction of presentation glitches in a digital video system. The present invention is a system and method that automatically determines if digital video (DV) data is missing from a stream of DV information and replaces or patches missing DV data with appropriate information to reduce the appearance of interruptions in the video (e.g., glitches in presentations). A communication packet carrying application data is received by an application data patching computer system. In one embodiment of the present invention, an IEEE standard 1394 compliant isochronous packet carrying digital video information is received. The application data (e.g., DV information) is separated from other communication packet protocol data (e.g., IEEE standard 1394 compliant header information). The received application data is analyzed to determine if it conforms to configuration constraints of predetermined application data format requirements. In one exemplary implementation, the initial information included in the application data section of the communication packet is analyzed to determine if it appropriately (e.g., sequentially) follows the information in previously received communication packet in accordance with predefined configuration definitions. If the information does not appropriately (e.g., sequentially) follow the information in previously received communication packet, a data patch is provided for lost or missing application data.