摘要:
A method (1000) of additively manufacturing an object (200) from a powder material (202) comprises discharging the powder material (202) from a powder-deposition opening (126) in a hollow body (122) of a powder-supply arm (108) while rotating the powder-supply arm (108) and an energy-supply arm (112) about a vertical axis A1. Method (1000) also comprises, while rotating the powder-supply arm (108) and the energy-supply arm (112) about the vertical axis A1, distributing the powder material (202) within a powder-bed volume (204) using a powder-distribution blade (128) that is coupled to the hollow body (122) and extends along the powder-deposition opening (126). The method (1000) further comprises, while rotating the powder-supply arm (108) and the energy-supply arm (112) about vertical axis A1, consolidating at least a portion of the powder material (202) in the powder-bed volume (204) using the energy emitters (114), coupled to the energy-supply arm (112).
摘要:
A method for implementing machining tasks for an object. The method identifies location coordinates for a plurality of holes. A task file contains the machining tasks. The robotic devices use the task files to perform the machining tasks. A minimum number of positioning stations is determined where a portion of the machining tasks will be performed by the robotic devices. An ordered sequence for performing the machining tasks is calculated and path a path with the near-minimum distance is determined. Robotic control files are created that cause the robotic devices to perform the machining tasks. The robotic control files are output to the robotic devices to perform the machining tasks to form the plurality of holes.
摘要:
A method of determining a pose of a workpiece includes receiving known positions of a plurality of reference features of a workpiece in a first pose in a first coordinate space, determining from the known positions an estimate of the first pose of the workpiece in a second coordinate space in which any pose of the workpiece is defined by six distinct components, and at least one of the six components are known. The method includes receiving a position of a second feature of the workpiece in the second coordinate space when the workpiece is disposed in a distinct, second pose in which the at least one known components remain constant between the first and second pose. The method includes determining the second pose of the workpiece from the first pose estimate and the position of the second feature of the workpiece in the second pose.
摘要:
A method, a device, and a computer-readable storage medium is provided for performing the method for automating an assembling sequence operation for a workpiece using an one-up assembly process that uses adjacent hole clamping. The method can include obtaining an adjacency list from points for the workpiece to be assembled; controlling an assembly machine for assembling the workpiece using a sequence of assembly operations based on the adjacency list; identifying potential errors in the sequence of assembly operations; determining a revised sequence of assembly operations based on the potential errors that are identified; and controlling the assembly machine based on the revised sequence of assembly operations.
摘要:
A system for printing an image on a surface may include a robot having at least one arm. A printhead may be mounted to the arm and may be movable by the arm over a surface along a rastering path while printing an image slice on the surface. The image slice may have opposing side edges. The printhead may be configured to print the image slice with an image gradient band along at least one of opposing side edges wherein an image intensity within the image gradient band decreases from an inner portion of the image gradient band toward the side edge.
摘要:
A method for verifying completion of a task is provided. In various embodiments, the method includes obtaining location coordinates of at least one location sensor within a work cell. The at least one sensor is affixed to a tool used to operate on a feature of a structure to be assembled, fabricated or inspected. The method additionally includes, generating a virtual object locus based on the location coordinates of the at least one location sensor. The virtual object locus corresponds to a computerized schematic of the structure to be assembled and represents of all possible locations of an object end of the tool within the work cell. The method further includes, identifying one of a plurality of candidate features as the most likely to be the feature operated on by the tool. The identification is based on a probability calculation for each of the candidate features that each respective candidate feature is the feature operated on by the tool.
摘要:
A hole location target includes a self-centering insert having a centerline and an optical target attached to the self-centering insert at a fixed position relative to the centerline of the self-centering insert. The optical target surface includes a two-dimensional pattern thereon.
摘要:
A method for implementing machining tasks for an object. The method identifies location coordinates for a plurality of holes. A task file contains the machining tasks. The robotic devices use the task files to perform the machining tasks. A minimum number of positioning stations is determined where a portion of the machining tasks will be performed by the robotic devices. An ordered sequence for performing the machining tasks is calculated and path a path with the near-minimum distance is determined. Robotic control files are created that cause the robotic devices to perform the machining tasks. The robotic control files are output to the robotic devices to perform the machining tasks to form the plurality of holes.
摘要:
A method and apparatus for controlling a positioning mechanism comprising a smaller scale positioning mechanism for moving a tool within a smaller scale work space and a larger scale positioning mechanism for changing a position of the smaller scale work space within the larger scale work space. A commanded position for the tool is received by a processor unit. An error component is determined using a difference between the commanded position and a current position of the tool in the larger scale work space. A restoring component configured to move the tool toward a selected position in the smaller scale work space is determined. Control signals for controlling the smaller scale positioning mechanism and the larger scale positioning mechanism together to move the tool from the current position to the commanded position are generated using the error component and the restoring component.
摘要:
A system for use in inspecting an object is provided. The system includes at least one array of visual imaging devices configured to capture a plurality of two-dimensional images of the object. The array is configured to capture a first set of two-dimensional images over a first predetermined interval and a second set of two-dimensional images over a second predetermined interval that is after the first predetermined interval. The system also includes a computing device coupled to the at least one array of visual imaging devices. The computing device is configured to extract point clouds of the object from the first and second sets of two-dimensional images, generate a three-dimensional model of the object from the extracted point clouds, determine variations in the extracted point clouds from the first and second sets of two-dimensional images, and utilize the determined variations to detect potential anomalies in the three-dimensional model.