Abstract:
A method (and related apparatus) includes receiving user input and generating at least one of schematic content for a circuit based on the received user input and a printed circuit board (PCB) layout based on the circuit. The method further includes generating a bill of material (BOM) for the circuit, and receiving a user selection of at least one of a computer-aided design (CAD) tool format and a PCB layout tool format. The method also includes receiving a user selection to include footprints for the components used in the schematic content or PCB layout and exporting at least one of the schematic content, and PCB layout as well as the PCB footprints to one or more files in accordance with the selected CAD and/or PCB layout tool format.
Abstract:
A method (and system) includes receiving, at a computing device including a design tool application, design parameters indicative of a plurality of power supply loads to be powered. The method further includes generating power supply solutions that do not include multi-channel voltage regulators and generating power supply solutions that do include multi-channel voltage regulators. The method also includes ranking all power supply solutions and providing the ranked power supply solutions to a user.
Abstract:
A method and system includes receiving, at a computing device including a design tool application, design parameters indicative of a plurality of power supply loads to be powered. The method further includes generating power supply solutions that do not include multi-channel voltage regulators and generating power supply solutions that do include multi-channel voltage regulators. The method also includes ranking all power supply solutions and providing the ranked power supply solutions to a user.
Abstract:
A method (and system) includes receiving, at a computing device including a design tool application, design parameters indicative of a plurality of power supply loads to be powered. The method further includes generating power supply solutions that do not include multi-channel voltage regulators and generating power supply solutions that do include multi-channel voltage regulators. The method also includes ranking all power supply solutions and providing the ranked power supply solutions to a user.
Abstract:
A method for converting a circuit in a format of a first circuit simulation program to format of a second circuit simulation program includes identifying components in the circuit that are recognized by the second simulation program. Characteristics for components that are not recognized by the second simulation program are created. Connections in the circuit are formatted to a format that is recognized by the second simulation program. The components, characteristics, and connections are stored in a single computer-readable file.
Abstract:
A method (and related apparatus) includes receiving user input and generating at least one of schematic content for a circuit based on the received user input and a printed circuit board (PCB) layout based on the circuit. The method further includes generating a bill of material (BOM) for the circuit, and receiving a user selection of at least one of a computer-aided design (CAD) tool format and a PCB layout tool format. The method also includes receiving a user selection to include footprints for the components used in the schematic content or PCB layout and exporting at least one of the schematic content, and PCB layout as well as the PCB footprints to one or more files in accordance with the selected CAD and/or PCB layout tool format.
Abstract:
According to exemplary embodiments, a system and method for automated system power supply design is provided. The system and method enables circuit designers to quickly and independently design complicated single or multi rail power supply systems including multiple loads and sequencing requirements. The power solutions offered to designers may include all required power supplies to power up the loads including sequencers and load switches. The power supply design system may be implemented on a standalone processing unit, a distributed computing network, internet based web application, or among various other network applications.
Abstract:
According to exemplary embodiments, a system and method for automated system power supply design is provided. The system and method enables circuit designers to quickly and independently design complicated single or multi rail power supply systems including multiple loads and sequencing requirements. The power solutions offered to designers may include all required power supplies to power up the loads including sequencers and load switches. The power supply design system may be implemented on a standalone processing unit, a distributed computing network, internet based web application, or among various other network applications.
Abstract:
A system includes a user input engine to receive input via a graphical user interface (GUI) through a first window, the input including a distance value and an input resolution value. The system also includes a sensor circuit solution generation engine to generate a plurality of sensor circuit solutions based on the received input and to cause the plurality of sensor circuit solutions to be displayed. Each sensor circuit solution specifies information about a conductive coil.
Abstract:
A method for converting a circuit in a format of a first circuit simulation program to format of a second circuit simulation program includes identifying components in the circuit that are recognized by the second simulation program. Characteristics for components that are not recognized by the second simulation program are created. Connections in the circuit are formatted to a format that is recognized by the second simulation program. The components, characteristics, and connections are stored in a single computer-readable file.