Abstract:
A walking assistance method may include receiving at least one abnormal gait type selected from a plurality of abnormal gait types, and differently controlling a walking assistance apparatus based on the at least one abnormal gait type.
Abstract:
Provided is a smart insole including a support layer; a plurality of pressure sensors provided to the support layer and configured to sense a pressure; a plurality of vibrators provided to the support layer and configured to generate a vibration; and a controller configured to determine a center of pressure (COP) based on a pressure sensed by each of the plurality of pressure sensors and to control the plurality of vibrators based on a positional relationship between a setting point and the COP.
Abstract:
A method and apparatus for training an algorithm to recognize a walking state of a user wearing a walking assistance apparatus are provided. The method and apparatus may generate virtual sensing data associated with walking of a virtual human model through a dynamic simulation, and may train the algorithm based on the virtual sensing data.
Abstract:
Provided is a method and apparatus for setting a torque of a walking assistance apparatus. A rotation angle and a rotation angular velocity of the walking assistance apparatus may be measured to set the torque. An amount of torque to be set may be calculated based on the rotation angle and the rotation angular velocity of the walking assistance apparatus.
Abstract:
A method and apparatus for controlling a walking assistance apparatus are provided. The apparatus may include a detector configured to detect a first step of a user, based on measured right and left hip joint angle information, a reconstructor unit configured to reconstruct knee joint information matched to the right and left hip joint angle information based on knee joint trajectory information in response to the user's steps, and a torque generator configured to generate a first torque applied to a first leg corresponding to the first step. The torque generator may generate the first torque, based on a second torque applied to a second leg that is opposite to the first leg and that corresponds to a second step preceding the first step.
Abstract:
Provided is a server for performing a low power communication and an operation method of the server that may generate a packet including collected data based on a maximum number of data items transmitted based on a maximum transmission unit (MTU) established between a client and the server and an allowable delay time of at least one service, and may transmit the generated packet to the client.
Abstract:
A battery pack for providing different power sources may include: a low voltage battery configured to supply a first voltage; a high voltage battery configured to supply a second voltage, the second voltage being higher than the first voltage; a charging circuit configured to charge the low voltage battery using the high voltage battery; and/or a controller configured to control the charging circuit to charge the low voltage battery when a charge state of the low voltage battery is less than a desired charge state.
Abstract:
A motion assistance apparatus including a proximal support configured to support a proximal part of a user, a first drive link and a second drive link configured to perform translational motions with respect to the proximal support at different velocities, a support link with both ends rotatably connected to the first drive link and the second drive link, respectively, the support link having a variable length, and a distal support connected to the support link, the distal support configured to support a distal part of the user is provided.
Abstract:
A wearable assistance apparatus is disclosed, wherein the wearable assistance apparatus may include a first frame configured to transfer a power in a first direction to assist a user, a second frame configured to transfer the power in a second direction to assist the user, a first wearing portion configured to urge the second frame towards the user in response to the first wearing portion being pulled in the first direction, and a second wearing portion configured to urge the first frame towards the user in response to the second wearing portion being pulled in the second direction.
Abstract:
A gait state recognizing apparatus may include an inertial measurement unit (IMU) sensor configured to measure a movement of at least one leg of a user and a processor configured to calculate a rotation angle and an angular velocity of the at least one leg based on the measured movement of the at least one leg, and the processor may be configured to calculate the rotation angle of the at least one leg relative to a direction of gravity from the movement of the at least one leg and the angular velocity of the at least one leg relative to the direction of gravity based on a trend of the rotation angle.